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CHAPTER

ONE

INTRODUCTION: WHAT MAKES A GOOD SCIENTIFIC
SOFTWARE PACKAGE?

The purpose of these notes is to introduce you to the main tools available for creating, develop-
ing, maintaining, and releasing a Python software package, with a particular emphasis on software
packages with an academic, scientific audience. While many scientists these days write and run
computer code for much of their working hours, relatively few scientists even now write software
packages that gain much use outside of their own group of collaborators, even though many of us
write code that is generally useful and all of science would benefit if scientists shared their tools
more widely. These notes aim to help move the community of scientists along toward more open-
source, open-development, well-tested, and well-documented code releases.

My own field is that astrophysics and my experience in writing code for astrophysical applications
inevitably colors all opinions expressed in these notes. I have written a few software packages
that have found more wide-spread use, primarily galpy, a Python software package for galactic
dynamics, but also various other packages for data handling and analysis and for machine learning.
Many of the thoughts expressed in these notes, especially the more opinionated ones, come from
my experience developing and maintaining these packages, with many of the lessons espoused in
these notes learned the hard way by me. But once you get the hang of how to package your code in
a way to make it useful to people, it becomes far easier to create new packages. Making the most
of the many wonderful automation services that are freely available these days is a crucial part of
making developing and maintaining code easier, and these notes therefore go into significant detail
on how to use these services.

Before we begin, it is important to mention that these notes are not intended to teach you how to
program in Python, neither the basics nor more advanced concepts, and a mature understanding of
Python is assumed. Much of what is discussed would generalize to packages written in languages
other than Python, but no attempt is made at generalization.

1
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1.1 “Why should I (want to) release my code?”

Even today, many scientists are often reluctant to release code they use, both more general software
packages that they use in many projects or the code specific to the analysis in a specific project.
The reasons given vary from embarrassment at the state of the code and the fear of being scooped
to it being too much of a burden to release code and wanting to keep code private as a competitive
advantage. About embarrassment there is little to say except that if you are so embarrassed by your
code that you would not want to share it, then perhaps the code is not fit for use in a scientific
paper. We should all think about the code we write to do our projects as equal in status to the
paper that describes the project and its results, and therefore one should not end up with a code
that one is embarrassed about, just like nobody submits a paper that they are embarrassed about.
With the increasing complexity of all scientific analyses, actually having access to the code is the
only hope we have of being able to reproduce analyses from previous work, since published papers
fall woefully short in providing a full description of all steps involved. But if we had at least a
snapshot of the code used for each paper, we would have a much better chance of reconstructing
what happened (perfect reproducibility is unfortunately a very thorny problem, with ever changing
versions of the many software packages one relies on and even of the underlying operating systems).

(This point was brought home once again in a recent exchange with an author whose work my
collaborators and I are relying on in an ongoing project; we asked the author to clarify a calculation
in their paper and its relation to a similar calculation in a previous paper and they replied that they
could not state whether the calculation was correct or not, because the paper was written seven
years ago. If the actual author of a paper cannot reconstruct what they did a few years later, what
hope is there for outside readers? But if the code had been available, it would have been easy to
check.)

About the fear of being scooped all I can say is that I do not believe I have ever heard of anybody
being scooped by people using their publicly-available code.

Because of the need for reproducibility, keeping code private once it has been used in a scientific
publication is unethical. Even if you do not make your code publicly available online, interested
parties should be able to request code that you used as part of a scientific publication, provided
that it can be shared without placing undue burden on the requestee (but it is hard to imagine that
sharing a code that is so precious that one would want to keep it private would be difficult to share).

Thus, it is clear that there are many good reasons from the standpoint of scientific practice and
ethics for sharing and releasing your code, but what about positive reasons for releasing your code?

I believe that you should want to release your code because it will make you do better science,
cause you to gain collaborators, increase your professional profile, help you share your work
with as wide a community as possible, and allow you to help the next generation of scientists
bloom.

One of the great advantages of sharing your code and having it be used by other people is that they
will find issues in the code. As they say, that’s not a bug, it’s a feature . All code has bugs (this
is why we will discuss in detail how to test your code (page 71)), and the more eyes on the code
and the more people using it, the more likely that major bugs with get caught and fixed (and fixed
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forever using continuous integration (page 95)). In the end, this leads to better science, because
code that’s used and re-used is more likely to be correct.

If you release your code and it gets used by a community of people, this will increase your pro-
fessional profile, because people who use your code will know and remember you, and they will
remember you fondly, because you help them out in their research without asking anything in re-
turn. People working with your code will contact you and describe their own use case, and this will
invariably lead to new collaborations.

Sharing your code and sharing the results of your research as re-usable code is also a great alterna-
tive way to gain exposure for the science that you are doing. People using your code will want to
find out what you did with the code and thus they will learn about the research that you are doing.
If your code is more generally applicable than the specific science area that you work in, this will
attract attention from people who might otherwise not learn about your research. And through your
code, you can influence how people do science, for example, by setting defaults to values that you
find reasonable.

Finally, an important reason for why I release code is to help make science more accessible. Well-
documented, well-tested code that is easy to use can provide an important jumping off point to
people new to the field you are in, whether they are students just starting out or more seasoned
researchers exploring a different field. By making state-of-the art tools easily available, we increase
the overall level of science done and help researchers explore their ideas. By making code open
source and developing in the open, this is the case no matter whether people are at a prestigious
institution, or students in remote areas of the world.

1.2 The dos and don’ts of software package development

There are many ways in which scientific software packages become successful. Your package may
solve a problem that is very difficult to solve and/or that requires specialized routines and a level
of code optimization not generally known among scientists; in this case, users will likely put up
with a lot of inconveniences. Most high-performance-computing codes fall in this category and
they are not typically known for being easy to install or use. However, much more common these
days is that a code solves a problem that is not easy to solve oneself, but doable by most scien-
tists working in the field with a moderate amount of effort, at least to write a basic version of the
code. Examples of these types of problems in astrophysics are (i) reading different data formats,
(ii) doing astronomical coordinate conversions, (iii) convolving spectra with photometric bands to
generate photometry, etc. But there is an enormous advantage to the community for these tasks
to be performed by generally-used software packages, because, through testing and use, packages
become very robust against bugs and because much-used packages have an incentive to get all of
the subtleties in calculations correct, which would likely be ignored by an individual writing a basic
version of a calculation. In astrophysics, this is a key reason why astropy has been such a success,
despite in many ways implementing basic astronomical tools that each on their own could be im-
plemented by a graduate student: the combined effort from many individual contributors has made
astropy robust and general to such a degree that it far surpasses what any individual could write
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and it therefore becomes an essential research tool.

In my opinion, the single-most important reason behind a code’s success in gaining wide-spread use
is being easy and intuitive to use. This should be the main driver behind any decision regarding
details of implementation, documentation, and installation of your code. Always put the user first.
Put yourself in the user’s position and ask how you would want to use the code if you had not written
it. That’s difficult to do, but it’s important to try. Users want a code to be easy to install, because
unless a code solves a problem they need to use and it would take them weeks or months to solve it
themselves, users will give up and implement the code themselves if they cannot easily install your
code. Functions, classes, methods, and variables in your code should have intuitive names, so it is
easy to remember how to use your code without having to constantly look at the (hopefully good
and comprehensive!) documentation. The basic functionality of your code should be able to be run
with a few lines of code, nobody wants to have to start with a hundred line code-block to get any
output from your code (that’s okay for advanced use, but basic use should be brief ). And whenever
you face a choice between simplifying the implementation of your code or simplifying its use, you
should go for the latter even if at the expense of the former (simple, intuitive implementation is
important from a maintenance perspective, but user experience is more important in my opinion).

To summarize, here is a list of dos and don’ts for developing your package:

• do allow your code to be installed using standard installation commands (pip install X for
PyPI packages, python setup.py build/install/develop for building from source, .
/configure, make, make install for compiled code).

• do have your code and auxiliary files installed in standard locations. Nobody wants to have to
use your code from the directory it was downloaded it in; code should be able to be installed
and be available system-wide if desired.

• don’t require use of files in non-standard locations: small data files should simply be copied
to the code’s directory; the exception to this rule are large data files that are necessary, which
may require the user to give a preferred location for these (e.g., through an environment
variable or a configuration parameter).

• do attempt to make your code work on commonly-used operating systems: Linux/UNIX, Mac
OS, Windows if possible (Windows can be tricky, although for pure Python code it should be
relatively straightforward if one pays attention to some details, like using os.path.join to
create file paths rather than writing them out directly).

• do support the last few minor Python and numpy versions (there is a numpy NEP with guide-
lines). To be as stable as possible, avoid using new features in the latest Python version, or at
least test for Python version in your code so it does not entirely fail on older versions.

• don’t require too many dependencies: What’s great about Python is the enormous variety of
packages available and you may be tempted to include many dependencies that your code
can use. But dependencies make code hard to maintain. Most packages you depend on
are under ongoing development and will change calling sequences, deprecate features, move
code between submodules, etc. and all these changes will break your own code (for example,
scipy has moved the logsumexp function twice since I started developing galpy, requiring
multiple if statements to deal with different scipy versions that galpy users might have).

4 Chapter 1. Introduction: What makes a good scientific software package?
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• don’t require hard-to-install dependencies: Dependency-problems are compounded when
dependencies are difficult to install. I am old enough to remember when simply installing
numpy or scipy was difficult; luckily that is no longer the case, but many packages can
still be difficult to install, especially if they require compiling code and linking to external
libraries. If a dependency is difficult to install, it is likely that many of your potential users
will fail to install the dependencies; if this means that they cannot run your package, they will
not end up using it.

• do make all but the basic dependencies optional: Dependencies can be made optional by
enclosing their imports in a try: ... except: ... statement and only raising an error
when your code truly cannot function without the non-imported dependency. This is a great
way to make sure that hard-to-install dependencies do not fully block use of your code. If
it is likely that users will lack a dependency and this lack would make a simple import
YOUR_PACKAGE fail, it is a good idea to make that dependency optional. A good practice
is to make any dependency that cannot be reliably installed using a simple pip install
optional.

• do document new features from when you write a first, basic versions of them. Documenta-
tion should not be an after-thought, something that you will “get to once the code is mature”.
Keep documentation up-to-date with changes in the code.

• do keep a changelog, documenting all but the most minor changes of your package’s func-
tionality.

• do use the standard Python mechanism for reporting errors and exceptions and for raising
warnings. Avoid excessive warnings, but err on the side of warning too often rather than too
little. Use warnings to point out changes to the code that a user may not be aware of, or to
warn about possible unintended usage. Using the standard Python exception/warning syntax
allows users to catch and ignore errors and warnings as they see fit.

• do write a comprehensive test suite (page 71) for your package and use continuous integration
services (page 95) to run it automatically whenever you update the code.

This is just an incomplete list of dos and don’ts and I will give more tips in the remainder of these
notes.

1.2. The dos and don’ts of software package development 5
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CHAPTER

TWO

THE BASIC STRUCTURE OF A PYTHON PACKAGE

To start, I will explain the basic structure of a Python package, which provides a skeleton onto
which you can add the features that we will discuss later in these notes (documentation, automated
testing, etc.). One way to learn about package structure is to peruse Python packages on GitHub,
e.g., galpy’s GitHub page. But because these packages have many complex maintenance features
implemented and they may use files specific to GitHub integration, this can be a confusing way to
start learning the structure of Python packages (however, once you know the basics, looking at other
packages is a great way to discover new features that you may want to use in your own package; in
general, you can learn a lot by reading other people’s code).

Similarly, there exists a wide variety of package generators, pieces of code that will generate skele-
ton packages that you can fill in to create your own package. A popular class of such package tem-
plates are those generated using the cookiecutter command-line utility, which allows you to generate
package skeletons for many different languages / layouts simply by calling cookiecutter with the
URL of a template. For example, astropy provides a cookiecutter package template specific to
packages in the astropy eco-system. In general, I shy away from using such templates, certainly
for beginning packagers, because these templates come with a confusing amount of advanced fea-
tures that obscure the basic structure of a package and that distract from the basic development of
the package (when I generate a template using the astropy template, I don’t even know where to
start putting code!). Cookiecutter templates are useful for advanced users creating many packages,
but for the purpose of learning about packaging, I think it is better to build the package from the
ground up and add each advanced feature individually later.

2.1 Naming your package

The first decision you have to make when creating a package is what to name it. Because it is
annoying to rename a package later, this is an important decision to make early on and it is worth
spending at least a few moments thinking about a good name. A memorable, catchy name will help
your package gain attention. Indeed, I am very happy to have snatched the “galpy” name when it
was available and even then I only ended up with “galpy”, because the name I had originally wanted
to use was pygd (for “Python galactic dynamics”), but this name was already taken by a project on
sourceforge.net.

7
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Besides being catchy, it is also important for a name to be unique, so you’ll want to check that the
name is not already in use by another project. For Python packages, it’s essential to check that there
is no package of the name you are thinking about available on the Python Packaging Index (PyPI), by
searching their database. This is essential, because eventually you’ll want to be able to install your
package using a simple pip install PACKAGE_NAME, because that is the first thing that users will
try when they learn that they need to use your package. If pip install PACKAGE_NAME installs
a different package, many users will end up being very confused. So while you can have a different
PyPI name from your package name, in the case of a conflict it is better to move away from your
intended package name and choose one that is available. For a Python package, being available
on PyPI is the most important consideration, but you might also want to check sourceforge.net to
check more generally against names of open-source projects (not necessarily in Python) and search
GitHub (although in the case of GitHub, the most important conflicts would be with packages that
actually appear to be used by a wider community). To make sure that the name does not disappear
while you are developing, you may want to register your package on PyPI as soon as possible, by
publishing a first release (page 129).

As for what to choose as a name, tastes differ. Many Python packages choose to end in py to make
it clear that they are Python packages (e.g., numpy, scipy, astropy, galpy), but this is not a rule
and a package name can be anything (indeed, the number of good, available names ending in “py”
is rapidly dwindling). You can choose a name that succinctly describes what your package does
(this has long been my own preferred naming convention, leading to such dryly named packages
as apogee, mwdust, gaia_tools) or you can choose a clever name or acronym (my own forays in
this direction are wendy and kimmy, although nobody ever seems to get them. . . ; also illustrating
that you can just end in “y”!). But I would recommend keeping the name of your package relatively
short, because even in the age of tab-completion, people using your code will end up typing its
name a lot.

So we will not have to tediously refer to PACKAGE_NAME as the name of our under-construction
package, from now on we will use exampy as the example (get it?) package. I will use exampy
throughout these notes to illustrate everything that is being discussed. The exampy package is
available here on GitHub and here on PyPI.

2.2 Package layout

Once you have decided on a name, it is time to start building your package. Make a directory that
will hold your package, which I typically give the name of the package, but this is not required.
Later, we will host this entire directory on GitHub and I will refer to it as the “top-level direc-
tory”. In this top-level directory, your package will be contained in a sub-directory that has the
name of your package, in our example case this is exampy/. This directory will contain all of your
code. Other sub-directories of the top-level directory will hold documentation and tests and sub-
directories will also be automatically be generated when you build and distribute your code (more
on that later). We will be using this example package throughout the rest of these notes to illustrate
documentation and testing tools, so you may want to follow along and implement this simple pack-
age yourself to be able to keep using it in the next chapters. You might want to add it to GitHub as
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exampy-GITHUBUSERNAME to distinguish it from the original package.

Files in the top-level directory largely hold meta-information about your package. The top-level
directory should have a README file with basic information about the package, it will hold the
license file (page 15), eventually it will contain configuration files for automated documentation
generation and for continuous integration of tests (but not yet!), if you host the package on GitHub
it may have one or more files specific to GitHub integration, and it will hold a few files related to
the installation and distribution of your code, the most important being the setup.py file.

Because we are building the package from the ground up, at first our package will have the following
structure

TOP-LEVEL_DIRECTORY/
exampy/
setup.py

To make the package into an importable Python module, the package directory needs to contain an
__init__.py file, which can simply be an empty file created using touch exampy/__init__.
py. So a full-fledged, bare-bones Python package looks like

TOP-LEVEL_DIRECTORY/
exampy/

__init__.py
setup.py

Without writing any further code under exampy/ (but with a basic setup.py file that we will
describe below), this example package could be installed and imported in a Python session.

The __init__.py file contains everything that is imported by import exampy or from exampy
import * (which you should never do!). You can put functions and classes directly in the
__init__.py file or you can write them in other files (to organize your code more clearly) and
import them in __init__.py to make them easily accessible. For example, say that we implement
a first set of basic math functions in _math.py and our package now looks like

TOP-LEVEL_DIRECTORY/
exampy/

__init__.py
_math.py

setup.py

then without adding code to __init__.py we need to from exampy import _math to gain
access to the functions in _math.py; import exampy would, for example, not allow access to
exampy._math. If you want the functions to be available under import exampy directly, you can
import them in the __init__.py as follows:

# __init__.py
from ._math import *

2.2. Package layout 9
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(although better would be to explicitly import all of the functions that you want to import). This
will make functions in _math.py, say you have a function def square(x): return x**2, as
exampy.square, available through, e.g., from exampy import square. Alternatively, if you
want to retain the “_math” part of the function, you can do

# __init__.py
from . import _math

which makes the square function available as exampy._math.square. In both of these cases, we
get the square function using a simple import exampy. I discuss below why I chose to start the
_math.py filename with an underscore.

When your code grows in complexity, you likely will want to separate functionality into different
submodules, such as exampy.integrate, which will contain functions to integrate mathematical
functions. As we saw above, such a structure can be generated by having a single file integrate.
py under the main exampy/ directory, but to allow for integrate to consist of multiple files, it is
better to make a directory integrate under exampy and use an __init__.py file in that directory
to make it a submodule. In this case, our example package’s layout becomes

TOP-LEVEL_DIRECTORY/
exampy/

integrate/
__init__.py

__init__.py
_math.py

setup.py

Everything that we have discussed so far for the main exampy/ directory contents holds for this
submodule as well: we can either write code in integrate/__init__.py directory or in differ-
ent files in that directory. For example, imagine that we have a file integrate/_integrate.
py that implements a simple Riemann sum def riemann(func,a,b,n=10): return np.
sum(func(np.linspace(a,b,n))*(b-a)/n). Then with an empty integrate/__init__.py
file we have to import exampy.integrate._integrate to gain access to exampy.integrate.
_integrate.riemann (or from exampy.integrate import _integrate or similar), or we
can again import the riemann function in integrate/__init__.py to make it accessible through
a simple from exampy import integrate call.

The convention I personally follow is to define submodules as much as possible through subdirec-
tories rather than as files, pulling all of a (sub)module’s functionality into its __init__.py file
to make it accessible to the user. This is why I gave the non-__init__.py files in the example
above names that start with an underscore. This indicates in the Python universe that these are
internal parts that should not be accessed directly by users; their functionality is exposed to users
by importing it into the (sub)module’s __init__.py file. But this is largely a matter of taste, the
most important considerations being keeping things simple for the user and keeping the code easily
understandable for yourself (in that order!).

The considerations in naming submodules are similar to those discussed in naming the package
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as a while above (page 7): choose short, descriptive names (not clever ones in this case; great ex-
amples are scipy.integrate, scipy.interpolate, which immediately make clear what these
submodules do and don’t do).

2.3 The setup.py file

Next, we want to make our package installable using standard Python installation tools. The main
tool used for Python packaging is setuptools. To use setuptools, we write a setup.py file that
includes all of the information necessary to build, install, and package the code.

Some packages use a setup.cfg configuration file to define the necessary information, but even in
that case one still needs to write a setup.py file that ingests the configuration file and hooks it up
to setuptools. While this has some advantages, for beginning users I think it is easier to directly
write the setup.py file, which is instructive and also allows for extensive customization later.
Another downside of using a setup.cfg file is that it makes it that python se[TAB] no longer
auto-completes to python setup.py! Advanced setup.py files can become quite complicated
(e.g., take a look at galpy’s setup.py file), so while it is again instructive to look at other packages’
setup.py files, for beginners this is likely to be highly confusing.

The main thing a setup.py file has to do is to call setuptools.setup(), which then takes care
of supporting all of the basic installation and packaging tools. For our example package exampy
above, a simple, bare-bones setup.py file is the following

# setup.py
import setuptools

setuptools.setup(
name="exampy",
version="0.1",
author="Jo Bovy",
author_email="bovy@astro.utoronto.ca",
description="A small example Python package",
packages=["exampy","exampy/integrate"]

)

This basic setup.py file defines the name of the package, its version, some basic information about
the author and the package, and it tells setuptools what the actual package is. If you add this file
to the example package, you will now be able to install it, by doing python setup.py install,
but see below (page 14) for more on how to install code.

Because installation proceeds by running the setup.py as a Python script, setup.py can contain
arbitrary code to help install your code. Let’s take a look at what other keywords we can provide to
the setup() function. We can provide:

• A long_description: This is a detailed description of what the code does (longer than the
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description, which should be a single sentence) and what eventually would be published
on the package’s PyPI site (e.g., see galpy’s PyPI page). Typically, one takes advantage
of the fact that we can run arbitrary code in the setup.py file to read the contents of the
README and use it as the long_description, using

# setup.py
with open("README.md", "r") as fh:

long_description = fh.read()
setuptools.setup(

...
long_description=long_description,
long_description_content_type="text/markdown",
...

)

in case the README’s format is Markdown, and we specify the format as well.

• url= with the homepage of the package: typically this is the GitHub site. Additional URLs
can be specified as project_urls=.

• license= with the name of the open-source license (page 15) (e.g., license='New BSD'
or license='MIT').

• classifiers= which contain meta-data about your project used by PyPI to categorize
your package. Commonly-used classifiers concern the development status of your code
(e.g., Development Status :: 4 - Beta, Development Status :: 6 - Mature),
the intended audience (e.g., Intended Audience :: Science/Research), the license
(again) (e.g., License :: OSI Approved :: MIT License), the programming lan-
guage used (e.g., Programming Language :: Python or more specifically, Programming
Language :: Python :: 3.7), and the operating system(s) the code works on (e.g.,
Operating System :: OS Independent for all). As far as I know, nobody ever uses
these classifiers and I find it difficult to remember to update them (e.g., between Python ver-
sions, or when the code matures to a higher development status), but it is considered good
practice to include them. For example, you could have

# setup.py
...
setuptools.setup(

...
classifiers=[

"Development Status :: 6 - Mature",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
"Programming Language :: Python :: 3.5",
"Programming Language :: Python :: 3.6",

(continues on next page)
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(continued from previous page)

"Programming Language :: Python :: 3.7",
"Topic :: Scientific/Engineering :: Astronomy",
"Topic :: Scientific/Engineering :: Physics"]

)

for a mature package used in astrophysics that works on recent Python versions on all oper-
ating systems. A full list of classifiers is available here.

These are the main descriptive, meta-data keywords used by the setup() function.

Further options of the setup function help setuptools deal with your package’s installation and
distribution:

• packages= lists the modules and submodules included in your package. For the example
above, this would be packages=["exampy","exampy/integrate"]. Rather than list-
ing modules manually, you can use packages=setuptools.find_packages() to find
them automatically, making sure to only include your own package by doing something like
packages=setuptools.find_packages(include=['exampy','exampy.*']).

• python_requires= specifies the Python versions supported by your code, mainly for use
by the pip installer. If you are not too worried about this, you can omit this, but if you only
support Python 3 (very reasonably these days), you can specify python_requires='>=3'.

• install_requires= lists the basic dependencies of your code, dependencies without which
your code cannot run. When users install your code using pip, pip uses this list to in-
stall any missing dependencies. For example, to specify that your code requires numpy
and scipy, do install_requires=["numpy","scipy"]. You can specify version re-
quirements, such as numpy>=1.7, using the standard pip syntax. If you have a depen-
dency that is not on PyPI (thus, not pip installable), but is, for example, on GitHub,
you can specify it in install_requires and give the URL in the dependency_links=
keyword, e.g., dependency_links=["http://github.com/jobovy/galpy/tarball/
main#egg=galpy"] to link to galpy’s GitHub source (of course, galpy is pip instal-
lable). In the example exampy package introduced above, we used numpy in the exampy.
integrate.riemann function, so we need to specify install_requires=["numpy"].

• package_data= is a dictionary with any data files that are part of your package(s) that need
to be copied over to the installation directory (only .py files are normally copied to the instal-
lation directory) and that will be distributed when the time comes to publish your package.
To copy data files to directories outside of the installation directory, use data_files=. To
include the README.md and the LICENSE file, do package_data={"": ["README.md",
"LICENSE"]}.

• entry_points= gives non-standard entry points to your code. For example, if you are dis-
tributing a command-line script, you can install that and make it executable on a user’s PATH,
by specifying
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# setup.py

...
setuptools.setup(

...
entry_points={
'console_scripts': [

'my_script=my_script:main',
]

}
...

)

which makes the main function of my_script an entry point.

More information on setup()’s keywords can be found on the setuptools documentation page.

2.4 Installing your code

Now that we have the basic outline of an example package and we have written the setup.py file,
we are ready to install the code! The standard method for installing a package from its source
directory (the top-level directory that contains setup.py) is to call

python setup.py install

which installs it in your system’s installation directory (typically under /usr/local on UNIX-style
systems). You can specify an alternative installation location using, e.g.,

python setup.py install --user

which installs the code in a directory in your home folder (typically under ~/.local on UNIX-style
systems, with modules installed in ~/.local/lib/pythonX.Y/site-packages). You can also
directly set a prefix using

python setup.py install --prefix=~/.local

where the chosen prefix here is to have the equivalent of the --user option (but --prefix can be
any directory). An alternative to directly calling python setup.py is to use pip even for local
packages. For example, you can install a local project using

pip install .

However, when you are actively developing a package, installing in the way discussed above means
that every time you update the code, you have to re-install it to gain access to any changes you have
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made. To avoid this, you can install the package in “develop” mode, using

python setup.py develop

or

pip install -e .

if you are using pip. In “develop” mode, the source is not copied to the installation directory, but
rather an entry is made in the installation directory to find the code back in the original directory.
This means that any changes you make are immediately available system-wide without requiring a
re-installation. Of course, if you have the package already loaded in a Python session, you still have
to exit and re-start the session (or use importlib.reload). If your package includes compiled
code and you make changes to the source code that need to be compiled, you do have to re-compile
the code by running python setup.py develop again.

2.5 Code licenses

Before moving onto the next chapter where I will discuss how to start sharing your code online with
others, it is important to briefly discuss code licenses. All code that is shared online should have
a license. Without a license specifying the terms of the code’s use and re-distribution, all code is
considered to be copyrighted to the author, without allowing re-use or re-distribution (code that you
put online without a license is not in the public domain, indeed, the opposite is the case). Thus, you
should choose a license for your code and put the license file in your code’s top-level directory. If
code is on GitHub without a license, the GitHub Terms of Service allow people to view and fork the
code, but no modifications or re-distribution are permitted (see the No License GitHub help page).
License your code.

There are two main categories of open-source licenses: permissive free software licenses and copy-
left licenses.

Permissive licenses, as their name implies, are very generous in their terms. Typically they allow
arbitrary use, modification, and re-distribution provided that the original license is retained, the
original author is properly credited, while any liability related to any use of the code is explicitly
denied. Examples of permissive licenses are the MIT License and the BSD 3-clause License, with
the MIT License appearing to be the permissive license of choice of recent projects. Permissive
licenses allow the broadest use of your code, because they require very little of people using your
code. Most of the major Python projects that you know and love use permissive licensing (e.g.,
numpy, scipy, astropy).

Copy-left licenses are open-source licenses that in addition to denying liability and requesting credit
for the original author also require that any modifications of the code be re-distributed under a
similar copy-left license. The main used example of a copy-left license is the GNU General Public
License version 3 (there is also an older version 2 which is somewhat more permissible). Thus, you
can only use copy-left-licensed code in packages that are themselves copy-left licensed. In practice,
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this tends to decrease adoption of such packages, even though the philosophy behind this style of
license is laudable (it aims to make sure open-source software remains open-source).

Creative Commons Licenses are not typically used for software, even though they are in heavy use
for sharing other creative content such as websites, class materials, scientific papers, blog posts,
etc.

The most important thing is that you give your code a license, with the type of license being of sec-
ondary importance; any license is better than no license. While it may seem silly to you, explicitly
denying liability is an important thing to do when you put code online, to legally protect yourself
from mis-use of your code (not that this has ever happened to me, but you never know. . . ). When
in doubt, choose a permissive license like the MIT License.
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CHAPTER

THREE

GIT AND GITHUB: VERSION CONTROL AND SOCIAL
OPEN-SOURCE DEVELOPMENT

All code should be under version control to keep track of changes over time and when it comes to
version control git is the dominant system. A 2018 Stack Overflow survey of developers’ version
control use found that 90% of developers use git, with the second most popular version control being
the older Subversion, likely mostly to use legacy code that still lives in Subversion repositories. git
is most widely supported by code hosting services, with GitHub only hosting git repositories and
BitBucket dropping support for the main git alternative mercurial in 2020. Basically, git is
now the only game in town.

3.1 Version control

Version control is a system for tracking and making changes to code as the code develops. Version
control stores code in a “repository” and when using version control, any changes to the code are
logged through a code “commit” that lists the files changed and provides a brief description of the
changes; version control software then generates a “diff” with respect to the previous version that
gets stored, such that the full history of changes is available for use in the future. Opinions differ
on how many changes to include in a single commit (which can consist of changes to multiple files
at once), but typically it is best to keep commits as “atomic” as possible, that is, create a commit
at the smallest change that is reasonable to call a change or improvement to the code. Commits
are often as small as changing a single line, perhaps improving the documentation or fixing a small
bug. When making changes to existing code, it is always best to keep commits at the level of small
changes, so any issues with the changes can later easily be pinned down to a specific change; change
commits should typically consist of a few lines to a few dozen lines of edited code at most. When
first implementing a new feature, it may make sense to wait to commit until a draft version of the
feature is working and one can thus end up with a larger commit, but even then it is best to first
implement a skeleton of the new feature and then edit it with small changes until the feature is fully
implemented.

Early version control systems stored the history of changes in a central location while each developer
only had a copy of the current version of the code; thus, every code commit and every query of
the code’s history required interaction with the central location (often remote, requiring an internet
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connection). Because this meant that one could not commit while offline and even when online was
an impediment to quick progress due to the sometimes slow response time of the central location,
this led to often bloated commits. One of the great improvements in git is that each copy of the
code’s repository contains the full history, leading to a decentralized system where there is no need
for a central location. Different copies of a git repositories are called “clones” and with git, clones
can communicate among themselves without needing to go through a central place. Of course, the
current reality is that most git repositories have “main” copies that are stored in online services like
GitHub or Bitbucket, with most of the communication between different clones happening through
the main hosted copy of the code. Nevertheless, the fact that each clone contains the entire history
means that you can easily commit code and investigate the history without requiring interaction with
a centralized repository, and this is therefore much faster and robust against network interruptions.

In this chapter, I provide a brief overview of the basic git features and commands and discuss
how to use GitHub to host your scientific code package. Note that this is not supposed to be an
exhaustive guide to using git, many such guides already exist.

3.2 Basic git use

The most basic cycle of git use is a cycle of git pull, git commit, git push. These com-
mands, respectively, pull in the latest changes from the remote main version of the code repository
(e.g., hosted on GitHub), commit new changes made to the code, and push the changes in this com-
mit(s) back to the remote main version. If you add git diff for looking at the not-yet-committed
current set of changes, git status for interrogating the status of the repository and git log for
looking at the history of the code, and you have well over 95% of my typical usage of git.

To get started with git, you can initialize any directory to be a git repository using

git init

which initializes an empty git repository. That is, even if the directory already has files in them,
these are not automatically added to the git repository, instead, you need to add them yourself. To
follow along with this tutorial, you can create, for example, a directory exampy-GITHUBUSERNAME
where you can build your own version of the exampy package that I discussed in the previous
chapter (page 7). Keep in mind that while we use git init here to get started with git, typically
the way you start a new git repository is not by running this command-line command, but instead
by creating a new repository on GitHub and setting it up online in such a way that you can directly
clone a local copy and start pulling, committing, and pushing changes (see below (page 25)). I don’t
think I have run git init once in the last eight years.

As discussed above, you should make a commit as soon as enough changes to the code have accrued
to make up a reasonable change to the code (again, this could be as simple as fixing a typo in the
code, a single character). Simply running

git commit
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will open a text editor (set by your git defaults) that allows you to write a message describing
the change; this will perform a single commit for all current changes to all changed files in the
repository. You can avoid the use of the text editor by directly specifying the message as

git commit -m "A message describing the atomic change made"

which I personally prefer as a fan of the command line (and of speed!). You can list specific files
to only commit changes to those files by adding them to the command as

git commit -m "A message describing the atomic change made" file1.py␣
→˓file2.py

It is good practice to always specify the files you are committing changes for rather than not speci-
fying any files or specifying a folder (which would commit changes to all files in that folder). This
way, you don’t end up accidentally committing changes made to other files that are unrelated to the
current commit (we will see below (page 24) how you can even split up changes in a single files
into different commits).

Before you can start committing changes to files, you need to tell git about the existence of the file
in the first place (typically soon after you create the file, in preparation for your first commit of the
file). This is done using git add which you call with

git add file1.py

and you can also list multiple files. Even though you specify a directory and you can use wildcards,
it is again good practice to always explicitly list all files that you are adding, rather than an entire
folder or more, because that way you will invariably end up adding files that you did not want to
add and removing them again can be difficult.

When your code is centrally hosted (as it should be!), each coding session should start with a git
pull to pull in changes in the remote main repository that have not yet been added to your clone
of the repository. If you are the sole developer of a code, this may seem silly, but it is again good
practice to always do this such that it becomes muscle memory and because even if you are the
sole developer, you are likely to be developing the code on multiple machines (a personal laptop, a
desktop at work, a remote server for running large jobs, . . . ) and this keeps the code in sync. When
you have cloned the code from GitHub and are working in the main branch, a simple

git pull

will suffice to pull in remote changes, but in general you can specify both the location of the remote
repository and the branch. For example, typically the simple git pull will be equivalent to

git pull origin main

which tells git to pull changes from the remote repository referenced as “origin” and to pull
changes from the main branch.
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After you have made one or more commits, you will want to push these commits back to the remote
main repository. Before you do that, it is good practice to again first do git pull to pull in any
changes to the remote repository that may have occurred while you were coding, so you can resolve
any conflicts before pushing your own changes (and possibly having them be rejected if there is a
conflict). Once you have done this, you push your commits with

git push

which is again typically a shortcut for the full

git push origin main

With just these four git commands you can get most of the basic functionality of git version
control. Further useful basic commands are git diff, git status, and git log. The git
diff command provides a “diff” showing the difference between your clone’s current state and the
last commit; thus, it shows the changes you have made since the last commit. Depending on your
setup, this diff will simply have ‘-’ lines and ‘+’ lines to show lines that were removed and added
(a change on a single line giving both a removal of the old line and an addition of the edited new
line) or they may be colored red and green. Running

git diff

without any additional arguments goes through all files that were changed, but you can look at
changes in a single file or in a set of files by specifying them in the call, e.g., as

git diff file1.py

Running git status gives a brief summary of the current version of your clone. It prints the
branch you are on and whether you are up to date with the remote repository’s same branch or how
many commits ahead of the remote repository you are. It also prints files that have changed since
the last commit and files contained in your clone that have not been declared to git (for example,
new files before running git add will show up in that list; after running git add they will be
listed as newly added). I use git status a lot to remind myself of what I have been doing since
the last commit.

git log prints a log of the history of changes to the code. Run without any options, it will provide
a moderately verbose list of all commits, listing the commit hash (the unique identifier of every
commit), the commit’s author and date, and the summary that you provided when running git
commit. But git log’s output can be highly customized. To get a very succinct listing do

git log --oneline

which will list each commit in an abbreviated manner on a single line. Or use the --pretty=
option to get less or more information, e.g.,

20Chapter 3. git and GitHub: version control and social open-source development



Python code packaging for scientific software

git log --pretty=short

which is similar to the basic output, but does not include the date.

3.3 Branches

A feature of most version control systems and one that is especially easy to use with git is the
ability to branch off the main development branch of your code to focus on developing a single
feature, fix a single bug, etc. After you are satisfied with the changes on the branch, these changes
are merged back into the main development commit history. A crucial part of the implementation
of the git software is fast and intelligent algorithms to perform such merges automatically, even
when the difference between the feature branch and the main branch are substantial. When git is
unable to automatically merge branches, the repository goes into a suspended state until the user
manually resolves any merges that cannot be automatically done.

Branches are an incredibly useful feature of git, especially when combined with forks discussed
below (page 25), and you should make liberal use of them. Branches allow you to split off things like
implementing new features, while still keeping the ability to fix bugs in the main branch without
that fix having to wait for the new feature to be ready to go “live”. Branches also allow you to
develop new features in the incremental way that you should implement all of your code (with many
commits), without necessarily having to worry at first that the new feature is entirely compatible
with the existing code or that it passes all existing tests.

The main branch is called main. It is good practice to keep this branch as clean as possible, that
is, avoid having it be in a state where it contains partially implemented features or bug fixes. The
main branch should always contain a fully working version of your code. Any significant changes
to your code should therefore be done in other branches.

To create a new branch, do

git switch -c NEWFEATURE

which creates a branch called NEWFEATURE (which should be a very brief string describing the
new feature, e.g., “add_cube” if you are adding a function to compute the cube of a number) and
switches the state of the repository to this branch. In detail, this command is a shorthand for the
following two commands

git branch NEWFEATURE
git switch NEWFEATURE

where the first git branch command creates the branch, while staying on the current branch (e.g.,
main) and the git switch command switches the state of the repository to the new branch. After
running this, git status will report that you are now on the NEWFEATURE branch. Any commit
that you make now is logged in the commit history of the branch, which is the same as that of
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the branch it branched off from up until the branching point and then starts containing additional
commits. Running

git branch

without any further arguments will show a list of all branches that exist in the local clone of the
repository (this is not necessarily the same as the branches that exist in the centrally-hosted reposi-
tory if those branches haven’t been checked-out in the local repository. To switch between branches,
run

git switch SWITCH_TO_BRANCH

where SWITCH_TO_BRANCH is the name of the branch you want to switch to (e.g., git switch
main to go back to main). This keeps the branch intact, it simply places the working state of the
repository to another branch. This is useful if you are working on a new feature in one branch, but
want to fix a bug in another branch. Make sure to commit all changes that you made in a branch
before switching to another branch, otherwise there is a good chance that you will accidentally
commit a change you meant to commit in the feature branch in the wrong branch!

Once you are ready to merge the changes in your branch back into the main branch, you switch
back to main and run the merge command

git switch main
git merge NEWFEATURE

git merge will attempt to perform the merge automatically, in which case you have to do nothing
except to okay a commit that performs the merge (sometimes not even that). If the automatic merge
fails, you will get a message like

Auto-merging file.py
CONFLICT (content): Merge conflict in file.py
Automatic merge failed; fix conflicts and then commit the result.

notifying you that the merge has failed and that you have to resolve conflicts between the branches
yourself. This is an annoying situation, but it will happen. The failed merge process will leave your
files in a state where they record the attempted merge and why it failed; your file.py in this case
will have a section that looks like

<<<<<<< HEAD:file.py
def cube(x):

return x**3
=======
def newcube(x):

return x**3.
>>>>>>> NEWFEATURE:file.py
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You can then manually resolve these, but it is typically easier to use a tool for this, which you can
bring up with

git mergetool

This command will ask you which tool to use (e.g., opendiff; if you use Visual Studio Code
it will automatically switch to this mode without having to do git mergetool) and will then open
the files with conflicts in sequence in the merge-tool to allow you to resolve the changes, with typical
output

This message is displayed because 'merge.tool' is not configured.
See 'git mergetool --tool-help' or 'git help config' for more details.
'git mergetool' will now attempt to use one of the following tools:
opendiff kdiff3 tkdiff xxdiff meld tortoisemerge gvimdiff diffuse␣
→˓diffmerge ecmerge p4merge araxis bc3 codecompare vimdiff emerge
Merging:
file.py

Normal merge conflict for 'file.py':
{local}: modified file
{remote}: modified file

Hit return to start merge resolution tool (opendiff):

Typically, these tools will show the two versions of the file, labeling all sections that need to be
merged and showing which cannot be performed automatically and it will show the merged version
of the file, which you can edit to resolve the merge (either through an option, such as “choose main”
or “choose NEWFEATURE” or by manually editing the merged file). Once you have resolved the
conflicts, you need to perform a simple

git commit

without any other arguments (i.e., don’t specify any files) to commit the merge.

Once you have merged a branch’s changes back into the main branch, you can delete the branch by
running

git branch -d NEWFEATURE

If you have performed the merge elsewhere (e.g., on GitHub), this command might complain that
the NEWFEATURE branch contains changes that have not been merged yet, but if you are sure that all
is okay, you can force-delete the branch by switching to an uppercase “D”

git branch -D NEWFEATURE

Be careful with this though, because if you accidentally delete a branch that you still need, it will
be very difficult to get it back (although, because it’s git, not necessarily impossible. . . ).
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3.4 Some useful advanced git features

The git features discussed above will allow you to do most of your day-to-day work with git
version control, but git has many advanced features. This is not supposed to be an exhaustive guide
to all git features, but in this section I briefly discuss some of the more advanced git features that
I use on a semi-regular basis.

Above, we have used git switch to switch branches, but git switch is a special version of
a more general command git checkout that can do much more (for switching branches, git
switch and git checkout are equivalent, but switching to a new branch is done with git
checkout -b NEWBRANCH instead). One often-used invocation is

git checkout -- file.py

which discards all changes in file.py since the previous commit (you can also run it on the entire
repository). This is useful when you’ve made a big mess and the easiest way out is to just give
up and start over (this happens to me a lot). Again, be careful with this command, because once
you discard the changes, it is impossible to get them back. In newer versions of `git, you can
equivalently run

git restore file.py

Besides checking-out branches, git checkout can also check-out a previous commit, by specify-
ing the commit’s hash as

git checkout COMMITHASH

where COMMITHASH is the hash (the number like 625123ab491088d6714809648d8a13ae435b7cf8
that you can get from git log or elsewhere). This will leave the repository in a “detached HEAD”
state, which doesn’t sound good and which isn’t indeed all that good (if you want to actually start
making changes, you will have to create a new branch starting from this commit), but it allows you
to switch back to an earlier state of the repository and see what it looked like or run tests etc. for
the earlier state. That’s often useful when you are trying to figure out where in the commit history
something went wrong.

If you are working in a branch and have uncommitted changes and you want to switch to another
branch (briefly, say) and you really don’t want to commit the uncommitted changes before the
switch, you can “stash” them away for future use. For this run

git stash

which stashes all uncommitted changes and reverts the repository back to the previous commit.
Then you can switch to another branch without carrying over the uncommitted change. Once you
are ready to start work on the uncommitted changes again, switch back to their branch and do
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git stash pop

to bring back the uncommitted changes. You can stash multiple sets of uncommitted changes and
there is support for listing them etc., but in practice that becomes ugly very quickly, so it is best to
use git stash very sparingly and only for very brief periods of time (e.g., you are in the middle
of working on a new feature, someone reports a bug that will just take two minutes to fix, so you
switch to a branch to fix the bug before coming back five minutes later to take up the new feature’s
implementation again).

Finally, git add, in addition to adding files to the repository’s list of files, can be used to specify
what parts of the current changes to “stage” for the next commit by running

git add -p

which is short for git add --patch. Run like this, this will start an interactive session that breaks
up all of the current set of changes into atomic chunks (called “hunks” for some reason) and asks
you whether you want to “stage the hunk” (i.e., add it to the next commit), “not stage the hunk”
(i.e., skip it), split the hunk into multiple sub-hunks if you want finer-grained control, or manually
edit the way in which the current hunk is staged for the next commit (typing ‘?’ at any time during
the process brings up a helpful explanation of the different options).

Using git add -p is useful when you have made a lot of changes since the last commit, perhaps
because you need many changes to perform a meaningful test of the new implementation, and you
want to break it up into multiple small commits for clarity in your repository’s history. In general,
it is best to simply make small commits along the way, but if you’ve found yourself making lots of
changes since the last commit, git add -p will help you out in keeping a sane code history.

3.5 Using GitHub to build a community for your code

What is GitHub? GitHub is an online service to host software packages using the git version
control system and that has many of the additional bells and whistles to help with a package’s de-
velopment, maintenance, and community interaction. While there is no direct association between
git and GitHub (there are other services to host git repositories, like BitBucket), at this point git
and GitHub are heavily associated with one another and it seems to me that the total dominance
that git has attained over other similar version-control systems has much to do with the exquisite
support for hosting git repositories that GitHub has provided now for many years.

At its most basic, GitHub provides the central location where the main copy of your repository is
stored, the location from which you git pull and to which you git push changes to the code.
As such, it provides a crucial back-up service for your code and a central hub that you can use to
keep different copies of your code up-to-date with one another. But GitHub provides many more
features than that. For aiding in the development and maintenance of your code, GitHub provides a
full online viewer of your code, arranged as a file system that is a central part of your code’s GitHub
website, which allows you to see the latest version of your code as well as the code at any commit
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in its history. It can also display changes made in each commit in an easy-to-understand format
and show you differences between the code at different points in the code’s history. But GitHub’s
most important feature is that it provides your code’s public face where users of your code will
go to learn about the code, to find your code’s documentation, to interact with the developer(s), to
commit patches to the code, etc. For many modern code packages, their GitHub page is the public
website of the package.

While you can import an existing code repository hosted elsewhere online, typically you start by
creating a new repository (log into your GitHub account to access this page). This brings up a
page that asks basic information about the code repository that you want to create. First you specify
the repository’s name and this should typically be the name of your software package; GitHub does
not require names across GitHub to be unique (only within your own account), but as we have
discussed before, using a globally unique name is important (page 7). Then you can specify a brief
description (which can be easily edited later, but it is good practice to always start with a cogent
description) and whether to make the repository public (viewable by all internet users) or private
(accessible only to yourself and any explicitly added collaborators). If your intention is for a wide
range of users to use your code, you’ll want to make it public! But even if this is your plan, you
may want to start off creating a simple version of your repository in private if you so desire (I don’t
judge, as long as you make it public soon ). Note that if you are an academic educator or researcher,
GitHub has a program that gives you a free “Pro” account, which comes with unlimited private
repositories. When you make a repository private, you can always change it to public later in the
repository’s Settings. You can then choose to “Initialize this repository with a README”, which
is a good thing to do, because it will create a skeleton GitHub repository that contains a README
file in Markdown format (therefore, README.md) that contains the name and description (and that’s
all your repository will contain at this point!). Starting out with a README.md means that you can
then clone the repository to your local machine, and start adding and committing changes without
having to locally git init an empty repository. You also have the option to add a .gitignore file
(this is a file that contains rules for files that git should largely ignore, e.g, not list as unknown files
to git when you run git status; this contains entries like *.pyc to ignored compiled bytecode
Python files; for a Python project, choose the Python version of the .gitignore file). You can also
immediately add a code license from a list of open-source licenses, which is a good idea (page 15).
Then hit “Create repository” and you’re done!

If you don’t initialize your repository with a README or any other file, it will be created but you
will have to finalize the initialization of the repository yourself. This is what you do when you have
already started the git repository locally using git init and by having added and committed
some files. In that case, you need to run

git remote add origin https://github.com/GITHUBUSERNAME/REPOSITORYNAME.git

to tell your local repository about the newly created GitHub repository and then do

git push -u origin main

to push your local initialization to GitHub. You can run this command after as many commits as
you want, that is, you can even push git repositories with thousands of commits to a newly-created
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GitHub repository and the GitHub repository will then contain the entire previous history of the
code in the same way as if you had developed it while using GitHub (in that sense, GitHub is simply
a viewer of your repository’s commit history).

When you have initialized your GitHub repository with a README.md file, you typically will create
a local copy by running (e.g., for the repository that contains these notes)

git clone https://github.com/jobovy/code-packaging-minicourse.git

The URL here is standard https://github.com/GITHUBUSERNAME/REPOSITORYNAME.git,
but the simplest way to obtain it is to go your repository’s GitHub page and click the big green
“Clone or download” button near the top, which will allow you to copy the URL to your clipboard.
As the name implies, git clone creates an exact, full copy of the GitHub repository on your local
machine. When you obtain your local copy in this way, the local copy is automatically aware of
the central GitHub location of your code, such that commands like git pull and git push work
without requiring any immediate further setup.

When you create a branch in your local copy of the repository, you need to tell your local copy
how to link up this branch with a branch in the GitHub version of your code. Simply trying to run
git pull in a newly created branch tells you what you have to do here: You can either always
(tediously) specify the remote branch as

git pull origin BRANCHNAME

(similar for git push) where “origin” is a shorthand for the GitHub repository (in general, the
central location of your code’s repository) or you can save this information using

git branch --set-upstream-to=origin/BRANCHNAME BRANCHNAME

such that you can again simply do git pull and git push and changes will be pulled and pushed
to the correct branch on GitHub. Note that if you have not yet pushed a newly created branch to
GitHub, the git pull origin BRANCHNAME command will fail to find the remote branch; in this
case, first push the branch with git push origin BRANCHNAME.

One of GitHub most crucial features is that it allows other users to easily create their own copy of
your code and hosting that on GitHub as well by creating a “fork” of your code. That is, a fork is
a copy of your code that is hosted under another user’s account and that is identical to your
git repository (including all commits) up to the point at which the fork was made. This allows
other users to make changes to your code using git without needing write access to your version
of the code, they can push changes to their own version of the code and make these available to
other users via GitHub. People who fork your code cannot directly write to your GitHub repository
and neither can you write to their fork of your repository (but GitHub prominently links back to the
original version). The purpose of most forks is for other users to make changes to the code that will
quickly or eventually be merged back into the main GitHub repository, but some codes have forks
that are long-lasting and never re-unite with the original repository. To create a fork, navigate to a
repository’s GitHub page and click the Fork button at the top right. If during work in a fork you
want to merge in subsequent changes made in the original repository, you will need to tell the clone
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of your fork about the original repository. The original repository is normally called the “upstream”
and you add it as a remote repository as, e.g.,

git remote add upstream https://github.com/jobovy/code-packaging-
→˓minicourse.git

if you have forked the repository containing these notes and want to merge in changes made in the
original repository. Then you can pull in changes from an “upstream” branch with, e.g.,

git pull upstream main

to pull in changes from the upstream main branch. Note that the “upstream” in this command is
simply the shorthand for the URL that you added with the git remote add command.

The main mechanism for merging changes made in a fork of a repository back into the main
repository is through a “pull request”, essentially a request to git pull the changes from the
fork into the main repository (although what’s actually done is a git merge). A fork is essentially
like a set of branches, where all of the original repository’s branches are present as duplicates of the
original’s and users can add additional branches. Merging changes made in a fork is essentially the
same as merging changes from a branch as we discussed above (page 21), with the only difference
being that the fork is hosted remotely. Every GitHub repository has a tab called “Pull requests”,
which lists the currently-open and previously-closed pull requests. To initiate a pull request, either
go the main repository’s Pull requests tab and click “New pull request” or go to your fork’s
page, which has a Pull request button that would initiate the pull request. When you open a pull
request, you should give a brief rationale behind the change that is being asked to be merged in. It
is good practice not to make changes to a fork’s main branch, but to instead create a new branch
to implement changes and then initiate a pull request from this branch to the original main branch.
For one thing, this will allow the original repository’s owner to check out your fork’s branch more
easily if this becomes necessary in the review or merging process.

When you open a pull request, the original code repository’s owners will likely ask you additional
questions about the changes, to edit the changes to abide by the main repository’s coding style, to
make sure that documentation/tests are updated (e.g., the log of changes), etc. and GitHub allows
this conversation to happen on the page associated with the pull request. Keep in mind that your
pull request may be rejected by the code’s owners: maybe it is implementing a new feature that
they do not wish to support and maintain in the future (any new feature will entail a maintenance
burden that will typically fall on the code’s owners rather than the person implementing it in a fork),
or maybe they want more explanation/documentation/tests and you are not willing to provide this.
Large pull requests may be difficult to review, so good pull requests are typically small (you may be
able to split up a big change into smaller, atomic pull requests if each one can stand on its own). If
you are concerned about doing a lot of work that might get rejected, contact the authors through the
communication channel(s) that they prefer before you start the work, so you can find out whether
they would be amenable to a pull request or not (you may want to do this by opening an Issue [see
below] if there is no other obvious way to contact the code owners/maintainers).

Merging pull requests proceeds in the same way as merging between branches in a git repository,
with the main difference being that if the merge can be done automatically, the merge can be done
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entirely through the GitHub site of your code, with no need to check out the fork’s code on your
own machine. If there is a merge conflict, you have to check out the fork’s code and manually merge
them (although you will likely want to ask the fork’s author to do this on their side, unless it requires
deeper knowledge of the code than the fork’s author can reasonably be expected to have). GitHub
has extensive support for helping in the review of pull requests, allowing you to make comments on
all of the changes and request additional changes, asking for reviews from particular contributors
before approving the changes to be merged, and running any automated tests that you have and
reporting their results. If you are expecting to have pull requests be a common way for your code
to evolve, it is essential to have an automated test suite (page 71) run with continuous integration
(page 95) that covers most of the lines in your code, to protect against unforeseen issues when
changes are merged into the main code’s repository.

Pull requests are the most important social aspect of how your code can grow when it’s hosted on
GitHub, but GitHub has many more features for the community of your users. A helpful README
file is a great way to introduce your code to your users and READMEs can have a variety of
formats that allow nice-looking GitHub sites to be created (don’t have one of those drab pure README
GitHub sites, use a Markdown README.md or a reStructuredText README.rst to create an attractive
first impression for your code). Like the “Pull requests” tab, there is also an “Issues” tab that
provides a venue for users of your code to report issues with its installation or use. Anybody
with a GitHub account can open an Issue, which then goes into a list of open issues to be resolved.
Any given issue typically consists of a conversation between the user reporting the issue and the
code’s maintainer(s) to figure out the root of the issue and commits that resolve the issue. Each
issue has a unique number that you can reference in code commits as #NUMBER and GitHub will
automatically link this commit to the issue online (you can even close issues through commits, by
writing phrases like “fixes #NUMBER” in the commit! But make sure that the commit actually
fixes the issue, because otherwise you will have to re-open it). When you are reporting an issue, it
is important to write up a useful description of the issue: succinctly explain what the issue is, give
the version of the code that you are using and the version of any other relevant component (e.g., the
Python version, your operating system, etc.), and try to create a minimal, reproducible example of
the issue which allows the maintainer to quickly reproduce the issue themself and which can form
the basis of a test added to the code’s test suite checking that the issue is and remains resolved.
Report any errors in full, using a service like pastebin to paste large logs (to not clog up the Issues
page). When you open an issue, respond promptly to any follow-up questions (don’t open an issue
just before going on vacation!) and make sure to close the issue once it has been resolved.

GitHub has many more features than the basic ones that I have discussed here, many of them having
to do with the integration with automated documentation and testing tools that I will discuss later
in these notes.
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CHAPTER

FOUR

DOCUMENTING YOUR CODE AND HOSTING THE
DOCUMENTATION ONLINE

Writing good documentation for your code is essential to allowing others to use it and it is crucial for
lowering your own burden of supporting users of your code. Having excellent documentation that is
easily accessible and that is up-to-date for the latest version of your code at all times allows people
to use your code without having to constantly contact you with questions about the code (which
many people will anyway not do, but they will rather simply not use your code if they cannot easily
figure it out). Documentation is also important for your own use of the code: a few months after
you’ve written a piece of code, it will not be immediately clear any longer how to use it (for me this
can be as quick as a few days!), so by writing good documentation, you will also help yourself save
time in the future from having to reconstruct how your own code works.

In this chapter, I first discuss the basics of how to write good documentation and then I discuss
various software tools that make writing good, up-to-date documentation easy and that allow you
to share the documentation online.

4.1 Basics of good documentation

Before starting a discussion of what makes for good code documentation, it is worth re-stressing the
importance of making your code easy and intuitive to use, with many of the basic features taking
at most a few lines to run. When that is the case, users will have to consult the documentation
much less often than when your code is difficult to use or when even using a basic feature of your
code requires them to write dozens of lines of code (e.g., setting up many related objects or many
configuration options in a complicated way). It will also make your documentation much easier
to write, because you will be able to illustrate your code’s use with short, copyable code snippets,
which makes the documentation much more pleasurable to read.

What’s most important about documentation is that it is as complete as possible and as up-to-
date as possible. Both of these are difficult to achieve, which is why using automated tools such
as those discussed below is useful, because they can help significantly with achieving this goal. It
is important that your documentation is as complete as possible, because otherwise users will run
into undocumented features and need to contact you or give up. The only reasonable features to ex-
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clude from the strict complete-documentation requirement are internal features that users shouldn’t
use; even then it is good practice to document them (albeit perhaps at a lower level of formatting
clarity) for your own and other code developers’ use. Documentation should be up-to-date to avoid
mis-use of your code after major changes and to again avoid user frustration when they find that the
documentation is out-of-date with the code and they cannot figure out how to use it. In addition to
using automation tools to help you out, the best way to achieve complete and up-to-date documen-
tation is to start writing documentation as soon as you implement new features and even before you
implement them. That is, ideally you would write a first draft of the documentation of a function or
class before implementing a first version of it, which has the added benefit of requiring you to think
through carefully what you want the function or class to do, what inputs to take, and what outputs
to return (similarly for tests later, ideally one would write them before writing the code). This is a
hard ideal to achieve in practice, but it is good to write at least some documentation in parallel with
the first implementation of the code. That way, your documentation will be complete. Keeping it
up-to-date requires you to make sure to immediately update the documentation when you change
the function.

Good documentation should cover at least the following sub-components:

• A guide to the installation of your package, discussing any pre-requisites. Your code should
be able to be installed with standard installation commands, but even so it is good to list the
commands (especially if you have both pip and conda installation options available, it is
necessary to alert users).

• A quick-start guide and a set of brief tutorials: This helps users to get started using your code
quickly by copying and pasting example code and it’s a good way to show off what your code
can do without requiring people to run it.

• A full API (Application programming interface): a complete listing of all of your code’s
functions, classes, and their methods. This is a reference guide that users can consult to learn
about exactly how each feature works and what its options are.

Your code’s installation guide should cover the typical way in which your package is installed.
This can be as easy as explicitly stating that your code should be installed with pip as

pip install exampy

(for our example package from Chapter 2 (page 7)). This may seem obvious to you, but it is useful
to explicitly give the command, people love to simply copy-and-paste code (and we will show below
how to add automatic copy-to-clipboard buttons like the one above). If your code has dependencies
that wouldn’t be easily and unobtrusively installed by pip (which will attempt to install all require-
ments listed in the install_requires part of your setup.py file, as we discussed in Chapter 2
(page 11)), then it is useful to list how to install these as well, again giving explicit commands as
much as possible, e.g.,

conda install numpy scipy

or
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pip install numpy scipy

if your dependencies are numpy and scipy. Especially if your code requires harder-to-install de-
pendencies or non-Python libraries (like the GSL, which provides many scientific functions in C
and is often used in C backends of Python packages), it is helpful to give commands for how to
install these on different operating systems (the GSL is now luckily available on conda-forge, so
the easiest way to install it is conda install -c conda-forge gsl). The installation guide is
also a good place for a ‘frequently-asked-questions’ (FAQ) section with common installation prob-
lems. Again, if your code is pure Python with few dependencies, just stating that your code can be
installed with pip install is likely all you need to say here.

The quick-start guide is a way to show off what your package can do and a place to give your
users some code snippets that they can start adapting for their own use. When potential users of
your package first look at your code they will be deciding whether or not using your package and
going to the trouble of installing it and learning to use it is worth it for them. Therefore, a page
in your documentation that demonstrates features of your code while also serving as a way to get
started is a good way to get people to start using your code. The key to a good quick-start guide is
to keep it brief and simple, but also get to interesting use of your code to show off what it can do;
achieving these two somewhat competing goals is again easier if your code is easy and intuitive to
use, because you can do impressive things with your code with very few keystrokes and, thus, you
can write a good quick-start tutorial that also shows of what amazing things your code can do. It
is difficult to keep these quick-start guides updated, so it is worth spending a bit of time carefully
thinking what you want it to cover and to only cover very stable features of your code.

You can complement the quick-start guide with a more extensive set of tutorials that go into more
detail. In practice, most outside users of your code (i.e., not yourself or your collaborators) will
likely only use features that are clearly documented and for which a usage example exists, because
most users will not attain a full understanding of all that your code can do (e.g., when combining
different aspects of it that aren’t obvious) to allow them to go far beyond the tutorials that you
provide. So a set of tutorials is where you can go over all of the most common use cases of your
code and all the things that you think people can use your code for. It is important to keep them clear
and succinct (with pointers for more advanced use), but it is difficult to write too many tutorials
(just like it is difficult to write too much documentation), so don’t hold back (keeping your own time
in mind of course).

Finally, a complete API should contain documentation for every function and class and every
method in a class in your code, arranged by sub-module. The objective of this is to fully document
your code, so users can get information on the inputs and outputs of all of your code’s functional-
ity. The API should be arranged in a logical manner, grouping functions and classes with similar
functionality. This is a part of your documentation where you should do a minimal amount of man-
ual work in the documentation itself, but rather you should use automated tools to directly grab
documentation from your code itself, in your functions’ and class’ docstrings, which I discuss next.
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4.2 Python docstrings

Python has a built-in mechanism to attach documentation to modules, functions, and classes and
their methods: docstrings. Docstrings are a place to put documentation for users of your code, that
is, the type of documentation that we are interested in here. Docstrings are not for developers: don’t
use them to comment on specifics of the implementation or on how the code works, unless this is
necessary for users of your code; for developer notes, use regular comments in the code (in Python:
lines that start with #).

Docstrings are simply regular strings that by virtue of their placement in the code get attached
to a module, function, class, or method as its documentation. They do not need to be explicitly
assigned as documentation, rather, the Python interpreter does this assignment automatically when
it encounters a string in the correct place. This location is as follows:

• For functions: immediately following the statement that defines the function def func(a,
b,c=0):, that is, between the def statement and the function body.

• For classes: immediately following the statement that defines the class class
a_class(object):, that is, between the class statement and the class body.

• For methods in a class: immediately following their definition using def, in the same way as
for functions.

• For modules and submodules: at the very top of the file defining the module.

I will give examples of these using the exampy example package that we set up in Chapter 2 (page 8).
When the Python interpreter encounters a string in the place specified above, it binds this string
to the __doc__ attribute of the module/function/class/method, where it is available to any user.
Variables cannot have docstrings in Python itself (that is, the Python interpreter does not bind
these to the variable’s __doc__ attribute), but many documentation tools will pick up docstrings
immediately following a variables assignment in the source code:

frac_out= 0.25
"""Fraction of the data that is considered an outlier"""

While docstrings can be any string, the convention is to use triple-quoted strings of the type ""
"A triple-quoted string""", because most docstrings contain multiple lines, which is only
allowed for triple-quoted strings. Thus, even if you have a docstring that is just a single line (which
should rarely be the case), use a triple-quoted string. A good docstring should contain at least:
(a) a brief description of what the module/function/class/method does, (b) an explanation of any
input arguments and keywords, and (c) a discussion of any return value(s) or, for functions and
methods, the lack thereof (it’s useful to know that a function does not return anything, unless this
is obvious, such as with a class’ __init__ function). You can include extra information such as
possible failure modes or references as well. While there are many standard formats for docstrings,
one of which I will discuss below, you do not have to follow a standard format, but it is important to
use a consistent style throughout your package such that users can easily parse the documentation
once they are used to your format.
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As an example, we can write a docstring for the top-level module of the exampy package. To do
this, we edit the exampy/__init__.py__ file such that it now looks like

"""exampy: an example Python package"""
from ._math import *

and the """exampy: an example Python package""" string then becomes the module’s doc-
string. To verify this, open a Python interpreter and do

import exampy
?exampy

which shows a message that says something like

Type: module
String form: <module 'exampy' from '/PATH/TO/exampy/exampy/__init__.py'>
File: /PATH/TO/exampy/exampy/__init__.py
Docstring: exampy: an example Python package

and in which you see the docstring that we just defined. You can also verify that it was indeed
attached as the module’s __doc__ attribute:

print(exampy.__doc__)

exampy: an example Python package

You should only use one-line docstrings for modules, submodules, and classes, because these do not
have direct inputs and outputs, so all of the documentation can easily fit on a single line (however,
you should feel free to have a multi-line docstring if there is more to say). A class’ docstring simply
describes the purpose of the class, not how to initialize the class or details on its methods (although
it could contain a list of attributes or methods; this isn’t generally considered to be necessary); a
class’ initialization should be documented as the docstring of the class’ __init__ function, just
like any regular method as I discuss below.

Functions and methods typically have inputs and outputs in addition to the brief description, and
these inputs and outputs should be separated onto their own line each; to keep a uniform style for
your documentation, you should therefore also use multi-line docstrings for functions that have no
inputs or outputs, stating explicitly that there are no arguments or keywords and no outputs. Methods
in a class are functions that are defined as part of a class and they are essentially the same as regular
functions, except that their first argument is self as the representation of the class instance. self
is not typically listed as a documented argument of a method, because it is always the first argument
of a method and it always has the same meaning. Therefore, methods and functions follow the same
documentation rules. I will discuss documentation for functions below, but keep in mind that the
same considerations apply to methods in exactly the same way.

While there are many standard docstring formats, for scientific code packages it is simplest to fol-
low numpy’s docstring convention (also used, e.g., by scipy, packages in the scikit series, and
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astropy). The most basic version of a docstring for a function should contain a description, in-
puts list, and outputs list in the numpy docstring format looks as follows, using as an example the
exampy.square function that we defined in exampy/_math.py in Chapter 2 (page 8):

def square(x):
"""The square of a number

Parameters
----------
x: float

Number to square

Returns
-------
float

Square of x
"""

return x**2.

The brief description is followed by a Parameters section that lists each argument and keyword with
the format

parameter: type
Parameter description

Similarly, the return value is described as

type
Description of return value

If your function returns multiple values, Returns becomes a list as well; in that case, you may
want to name your return values for extra clarity and follow the same format for each as that for
each input parameter. If your function does not take any arguments or keywords, you can simply
state

Parameters
----------
None

Similarly, if your function does not return anything, you can use

Returns
-------
None

None
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where the two “None”s are necessary, because the sphinx typesetting of the numpy-style doc-
strings that I will discuss below breaks the return section up into the two components “type” and
“Description of return value”.

If we then run

?exampy.square

a message shows up that looks as follows

Signature: exampy.square(x)
Docstring:
The square of a number

Parameters
----------
x: float

Number to square

Returns
-------
float

Square of x
File: /PATH/TO/exampy/exampy/utils.py
Type: function

We can again check that the docstring was indeed assigned to the function’s __doc__ attribute with

print(exampy.square.__doc__)

The square of a number

Parameters
----------
x: float

Number to square

Returns
-------
float

Square of x

For most functions, you will want to include a longer description than the one-line description that
we could use for the square function above. In that case, you would still start the docstring with a
one-line summary, but also provide an extended description after two line breaks. For example, for
a verbose exampy.square docstring

4.2. Python docstrings 37



Python code packaging for scientific software

def square(x):
"""The square of a number

Calculates and returns the square of any floating-point number;
note that, as currently written, the function also works for
arrays of floats, ints, arrays of ints, and more generally,
any number or array of numbers.

Parameters
----------
x: float

Number to square

Returns
-------
float

Square of x
"""

return x**2.

If a function has optional keyword arguments, the documentation should make it clear that these
are optional, either by adding , optional after the parameter’s type or by stating this in the de-
scription of the parameter (but the first method is most clear). You can also specify what the default
value of the keyword is, but this is not really necessary, because most documentation tools will
display the function’s signature, which normally shows the default value. For example, we can
document the exampy.integrate.riemann function in exampy/integrate/_integrate.py;
with documentation, that function looks like

def riemann(func,a,b,n=10):
"""A simple Riemann-sum approximation to the integral of a function

Parameters
----------
func: callable

Function to integrate, should be a function of one parameter
a: float

Lower limit of the integration range
b: float

Upper limit of the integration range
n: int, optional

Number of intervals to split [a,b] into for the Riemann sum

Returns
(continues on next page)
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(continued from previous page)

-------
float

Integral of func(x) over [a,b]
"""

If we then request the documentation for the riemann function

import exampy.integrate
?exampy.integrate.riemann

we get a message that says something like

Signature: exampy.integrate.riemann(func, a, b, n=10)
Docstring:
A simple Riemann-sum approximation to the integral of a function

Parameters
----------
func: callable

Function to integrate, should be a function of one parameter
a: float

Lower limit of the integration range
b: float

Upper limit of the integration range
n: int, optional

Number of intervals to split [a,b] into for the Riemann sum

Returns:
--------
float

Integral of func(x) over [a,b]
File: /PATH/TO/exampy/exampy/integrate/_integrate.py
Type: function

and we see that the function signature includes the default value of n even though the docstring
didn’t specify it. If the default value of a keyword is the result of calling a function, such that it isn’t
immediately clear what the default value is from the function signature or how it is calculated, you
probably want to state it in the docstring.

Additional commonly-used sections of a function’s docstring are (each following the

SECTION
--------

format) are:
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• Raises: a list of exceptions that the function may raise and when it raises them.

• See Also: a list of related functions; automated documentation tools will be able to link
these automatically if you list them in the same way that you would import and use them
(e.g., in square above you can refer to cube, if such a function exists in the same file, but
to refer to riemann which is in exampy.integrate, you need to say explicitly exampy.
integrate.riemann).

• Notes: extended notes on the function. Use this to list calculation or implementation details
that you think the user should be aware of. You can also use this section to give details on the
history of the function, keeping track of major changes and when they occurred. For example,

History:

2020-03-01: First implementation - Bovy (UofT)
2020-04-06: Added new keyword Y to allow for Z - Bovy (UofT)

• References: a list of bibliographic references, using the format

.. [1] J. Bovy, "galpy: A Python Library for Galactic Dynamics,"
Astrophys. J. Supp., vol. 216, pp. 29, 2015.

As a full example, we implement a docstring for a new exampy.cube function that computes the
cube of a number, which is located in exampy/_math.py (see Chapter 2 (page 8)) and display it
here:

print(exampy.cube.__doc__)

The cube of a number

Calculates and returns the cube of any floating-point number;
note that, as currently written, the function also works for
arrays of floats, ints, arrays of ints, and more generally,
any number or array of numbers.

Parameters
----------
x: float

Number to cube

Returns
-------
float

Cube of x

Raises
(continues on next page)
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(continued from previous page)

------
No exceptions are raised.

See Also
--------
exampy.square: Square of a number
exampy.Pow: a number raised to an arbitrary power

Notes
-----
Implements the standard cube function

.. math:: f(x) = x^3

History:

2020-03-04: First implementation - Bovy (UofT)

References
----------
.. [1] A. Mathematician, "x to the p-th power: squares, cubes, and their

general form," J. Basic Math., vol. 2, pp. 2-3, 1864.

In the Notes section here, I also illustrate how LaTeX math can be used to typeset equations (more
on that below).

That docstrings are simply a submodule/function/class/method’s __doc__ attribute means that they
can be generated, parsed, and modified programatically. That is, you can also specify a docstring
by explicitly setting the __doc__ attribute, you can automatically extract information from the doc-
string by parsing it as you can any string in Python, or you can modify the docstring (e.g., adding
additional information to it). This is, for example, useful when you are defining functions progra-
matically, e.g., automatically defining a set of functions with similar functionality; then you can
add documentation to these automatically generated functions by explicitly setting their __doc__
attribute. For example, we set the docstring for the exampy.integrate submodule by editing
exampy/integrate/__init__.py to be

__doc__= """exampy.integrate: submodule with utilities for calculating
the integral of functions"""
from ._integrate import *

When we then do
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?exampy.integrate

We get a message that says something like

Type: module
String form: <module 'exampy.integrate' from '/PATH/TO/exampy/exampy/
→˓integrate/__init__.py'>
File: /PATH/TO/exampy/exampy/integrate/__init__.py
Docstring:
exampy.integrate: submodule with utilities for calculating
the integral of functions

that is, we see that the docstring was correctly attached.

As an example of documenting a class, we add a Pow class to exampy/_math.py to calculate an
arbitrary power of a number. We add an __init__ function to setup the power to raise numbers to
and a __call__ function to raise a number to the object’s power. With documentation, the class
looks as follows

class Pow(object):
"""A class to compute the power of a number"""
def __init__(self,p=2.):

"""Initialize a PowClass instance

Parameters
----------
p: float, optional

Power to raise x to
"""

self._p= p

def __call__(self,x):
"""Evaluate x^p

Parameters
----------
x: float

Number to raise to the power p

Returns
-------
float

x^p
"""

return x**self._p
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We see that we follow the class definition statement class Pow(object): with a docstring that
briefly describes what the class does and then we document the two methods __init__ and
__call__ just as we would normal functions, leaving the self argument undocumented. If we
ask for the docstring of a class instance, we get the overal class docstring:

po= exampy.Pow(p=4.)
print(po.__doc__)

A class to compute the power of a number

if we ask for the help for the class, we get the class docstring and the docstring for how to initialize
the function:

?exampy.Pow

gives something like

Init signature: exampy.Pow(p=2.0)
Docstring: A class to compute the power of a number
Init docstring:
Initialize a PowClass instance

Parameters
----------
p: float, optional

Power to raise x to
File: /PATH/TO/exampy/exampy/_math.py
Type: type
Subclasses:

and it we ask for the help for the instance, we get all three docstrings, because calling the instance
is also how you access the __call__ method:

?po

gives something that looks like

Signature: po(x)
Type: Pow
String form: <exampy._math.Pow object at 0x1179e2c18>
File: /PATH/TO/exampy/exampy/_math.py
Docstring: A class to compute the power of a number
Init docstring:
Initialize a PowClass instance

Parameters
(continues on next page)
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(continued from previous page)

----------
p: float, optional

Power to raise x to
Call docstring:
Evaluate x^p

Parameters
----------
x: float

Number to raise to the power p

Returns
-------
float

x^p

At the risk of sounding like a broken record, I will once more repeat that you should write these
docstrings as soon as you implement a function and ideally before you implement it and you should
implement a full docstring of your preferred format from the get-go. If you do this enough times, it
will become second nature and you will not even be able to imagine writing code and documentation
in any other way!

4.3 Using sphinx to write and generate documentation for
your package

Docstrings are the way to document each submodule, function, class, and method that your package
consists of, but if you want to go further and create an (online) manual, more work is required. The
main tool used for this in the Python eco-system is sphinx, which was originally created for the
documentation of the Python language and standard library itself, but it is a very general documen-
tation system that can be used for any Python package and beyond. These notes, for example, are
created using sphinx.

There are many ways to install sphinx, but the easiest way is to simply install sphinx from PyPI as

pip install sphinx

In addition to the basic sphinx package, additional sphinx functionality can be obtained by installing
a variety of extensions, some of which I will discuss below.

sphinx uses the reStructuredText mark-up language for writing documentation pages that can be
rendered as HTML, LaTeX, or any of a large number of other formats. Thus, a single manual
written in reStructuredText can be used to create online HTML help pages, a PDF manual, an e-
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book version, etc. The PDF version of these notes that is linked on the Contents page is generated
from the same underlying files as the HTML version. reStructuredText is similar in spirit to the
Markdown mark-up language that is typically used for READMEs and that can be used in GitHub
Issues and Pull Request comments, but in detail has a different syntax. I will cover the basics of
reStructuredText as part of the discussion in this chapter, but these notes do not try to give a full
overview of reStructuredText.

The easiest way to get started with building a sphinx manual for your package is to create a directory
that will contain the manual in the top-level directory of your code, named doc/ or docs/. For
example, for the exampy example package, our top-level directory looks now as follows

TOP-LEVEL_DIRECTORY/
docs/
exampy/
README.md
setup.py

Then go into the docs/ directory and start the sphinx manual by running

sphinx-quickstart

This script asks you a few basic questions to set up the skeleton of the manual. It asks whether
you want to “Separate source and build directories (y/n) [n]”, which is to say, either have separate
source/ and build/ directories containing the manual’s source (which you will edit) and the
manual’s builds for different formats (which are automatically generated); alternatively, if you say
“n”, the builds will go into a _build/ sub-directory of the source/ directory. The current default
is the latter, but I strongly prefer separating the source/ and build/ directories to keep a clean
separation between source and automatically-generated builds (for one thing, this makes managing
your documentation’s changes with git much easier, because you will not as easily accidentally
add built files to the git repository).

Next, the script asks for the project’s name, which typically should be the name of your package
(exampy in our example case); the author’s name; the current release (typically you should start with
“0.0.1” or “0.1” depending on how fine-grained you want to version your code), and the language
of your documentation. All of these can be changed later (some more easily than others). After
this, sphinx sets up the basic structure of the manual and how to build it: for the current version of
sphinx, the contents of the docs/ directory after running sphinx-quickstart is

build/
source/

_static/
_templates/
conf.py
index.rst

Makefile
make.bat
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Here, the Makefile and make.bat are files that allow different formats of your documentation to be
built using make, the standard build tool. The build/ directory is initially empty and will contain
builds of different formats of your manual; for example, later it will contain a html/ directory
with the HTML version of your manual and perhaps a latex/ directory with the LaTeX and PDF
versions of your manual.

The source/ directory is where you write the manual itself as a set of reStructuredText (.rst)
files. sphinx-quickstart has populated a skeleton for the main index page of your manual that
is its entry page and lists its contents, it looks something like

.. exampy documentation master file, created by
sphinx-quickstart on Wed Mar 4 20:11:34 2020.
You can adapt this file completely to your liking, but it should at␣

→˓least
contain the root `toctree` directive.

Welcome to exampy's documentation!
==================================

.. toctree::
:maxdepth: 2
:caption: Contents:

Indices and tables
==================

* :ref:`genindex`
* :ref:`modindex`
* :ref:`search`

The statement following the .. directive is a comment that is not displayed in the manual. All
reStructuredText directives start with .., these directives are used for figures, code examples, math,
etc. The “Welcome to exampy’s documentation!” is the main title header on the page and title
headers in reStructuredText are indicated by a style of underlining (here “=======”); note that there
is no specific order of different underlining styles for different types of headers, reStructuredText
automatically figures out what the hierarchy is based on the different styles that you use (so you can
use “=======” for the first, main header, then use ‘——–’ for each sub-title within this section,
another “======” underlined title for a second title at the highest-level, and more “——’ sub-titles
below that, perhaps even a ‘**********’ underlined sub-sub-title. . . ).

The .. toctree:: directive is the most important part of the index page and it contains the main
table of contents as a set of files that contain the documentation: a sphinx manual is a set of pages
that are all part of some table-of-contents (some toctree), either listed in this main table of con-
tents, or in a .. toctree:: directive that gives a table of contents on a page included in the main
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toctree. sphinx does not like pages that are not part of any toctree directive and it will warn if
it encounters one of these; these pages will still be processed and you can link to them, but sphinx
won’t include a link to them automatically. To populate the toctree we will create a set of pages
in the source/ directory, such as installation.rst, intro.rst, etc. and to include these in
the manual, the main toctree looks like

.. toctree::
:maxdepth: 2
:caption: Contents:

installation.rst
intro.rst

Note that it is not necessary to include the .rst part of the filename, but when you are including
different types of files (as we will discuss below), it is useful to make it explicit what the format
of each page is. When you include the manual’s chapters like this, sphinx automatically grabs the
titles from each file to make an entry in the table of contents, but you can also specify a custom title
here, by doing

.. toctree::
:maxdepth: 2
:caption: Contents:

Installation instructions <installation.rst>
intro.rst

The toctree directive has many options. For example, the :maxdepth: 2 option specifies that
the displayed table of contents should include the main sections of each page (like for the table of
contents of these notes); setting it to 1 would only include the title of each page/chapter, setting it
to 3 would include subsections. Some of the more commonly used options are

• :caption: A CAPTION a caption for the table of contents; used as the title of the table-of-
contents part of the page.

• :numbered: by default, entries in the table of contents are not numbered, but setting this
option numbers them.

• :name: a_name a name to use to reference the table of contents, that is, to create internal
links to the table of contents using the :ref: mechanism discussed below

The final part of the automatically-generated index page is “Indices and tables”, which contains
an automatically-generated index and search function. I don’t personally find these very useful
typically and they can be removed from the index.rst file to remove them from the manual without
any adverse affect.

The two directories _static/ and _templates/ that sphinx-quickstart generated in the
source/ directory are empty. For most basic documentation needs, you will not need to popu-
late these, but they are used to: store “static” files in _static/ such as css style files to customize
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the look of your manual’s HTML page or any extra Javascript code that you might want to use on
your manual’s HTML page (this is not typical); and to store changes to the default page templates
that sphinx uses to create HTML, etc. pages from your reStructuredText source. sphinx is highly
customizable, but typical users do not need to worry about all of these customization options and
directories.

Finally, sphinx-quickstart created a conf.py file in the source/ directory. This is the con-
figuration file for your manual, which is a Python script itself and which tells sphinx how to build
your manual. At first, it looks like

# Configuration file for the Sphinx documentation builder.
#
# This file only contains a selection of the most common options. For a␣
→˓full
# list see the documentation:
# https://www.sphinx-doc.org/en/master/usage/configuration.html

# -- Path setup ----------------------------------------------------------
→˓----

# If extensions (or modules to document with autodoc) are in another␣
→˓directory,
# add these directories to sys.path here. If the directory is relative to␣
→˓the
# documentation root, use os.path.abspath to make it absolute, like shown␣
→˓here.
#
# import os
# import sys
# sys.path.insert(0, os.path.abspath('.'))

# -- Project information -------------------------------------------------
→˓----

project = 'exampy'
copyright = '2020, Jo Bovy'
author = 'Jo Bovy'

# The full version, including alpha/beta/rc tags
release = '0.1'

# -- General configuration -----------------------------------------------
→˓----

(continues on next page)
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(continued from previous page)

# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
extensions = [
]

# Add any paths that contain templates here, relative to this directory.
templates_path = ['_templates']

# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
# This pattern also affects html_static_path and html_extra_path.
exclude_patterns = []

# -- Options for HTML output ---------------------------------------------
→˓----

# The theme to use for HTML and HTML Help pages. See the documentation␣
→˓for
# a list of builtin themes.
#
html_theme = 'alabaster'

# Add any paths that contain custom static files (such as style sheets)␣
→˓here,
# relative to this directory. They are copied after the builtin static␣
→˓files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ['_static']

At first, this configuration file basically just contains the info that you provided to
sphinx-quickstart: the name of the project, the author, a copyright string created from the
current year and the given author, and the version that you provided. Then there is a section for any
sphinx extension that you use (like the ones that I discuss below) and a statement about templates
being in the _templates/ directory. The last section is specific to the HTML build of the man-
ual: the theme (default: alabaster, but there are many theme options) and the path where additional
static files are located (the _static/ directory discussed above). If you are creating other formats
as well and want to customize these, you can add sections for LaTeX output etc. below this. A full
list of options for the conf.py file is available here. The conf.py file is a list of Python commands
and it is executed whenever the documentation is built; this allows you to run arbitrary Python code
during the build of your manual (e.g., this is how these notes add the git revision hash for the
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current version on the main page and in the PDF filename).

To create the documentation, we use make. Simply running make in the docs/ directory returns a
list of make options:

make

gives

Sphinx v2.2.0
Please use `make target' where target is one of
html to make standalone HTML files
dirhtml to make HTML files named index.html in directories
singlehtml to make a single large HTML file
pickle to make pickle files
json to make JSON files
htmlhelp to make HTML files and an HTML help project
qthelp to make HTML files and a qthelp project
devhelp to make HTML files and a Devhelp project
epub to make an epub
latex to make LaTeX files, you can set PAPER=a4 or PAPER=letter
latexpdf to make LaTeX and PDF files (default pdflatex)
latexpdfja to make LaTeX files and run them through platex/dvipdfmx
text to make text files
man to make manual pages
texinfo to make Texinfo files
info to make Texinfo files and run them through makeinfo
gettext to make PO message catalogs
changes to make an overview of all changed/added/deprecated items
xml to make Docutils-native XML files
pseudoxml to make pseudoxml-XML files for display purposes
linkcheck to check all external links for integrity
doctest to run all doctests embedded in the documentation (if␣

→˓enabled)
coverage to run coverage check of the documentation (if enabled)

The option you will use most commonly for online software documentation is:

make html

which creates the HTML version of your manual in the build/html/ directory (or in the source/
_build/html/ directory if you did not separate the build/ and source/ directories. For the
basic version created by sphinx-quickstart, this creates an index page that looks like
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We then start writing the documentation, starting with adding the installation.rst and intro.
rst files that I mentioned above. The installation.rst file contains the basic installation in-
structions and looks like

Installation instructions
=========================

Dependencies
------------

``exampy`` requires the use of `numpy <https://numpy.org/>`__.

Installation
------------

``exampy`` is currently not yet available on PyPI, but it can be
installed by downloading the source code or cloning the GitHub
repository and running the standard::

python setup.py install

command or its usual variants (``python setup.py install --user``,
``python setup.py install --prefix=/PATH/TO/INSTALL/DIRECTORY``,
etc.).

For more info, please open an Issue on the GitHub page.

where I use the different underlining styles of headers discussed above to create a main page title
and two sections. The first sentence contains a link to an external website, the numpy website in this
case. The words enclosed in “``” highlight them as “code” and the separate indented line following
a double colon “::” give a code block, which will be type-set in a special way (this indented block
can consist of multiple lines for a multi-line code-block). Code blocks can also be created using
the .. code-block:: directive, which sets the highlighting language (default: Python) and then
gives the code example, e.g.,

.. code-block:: python
(continues on next page)
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(continued from previous page)

python setup.py install

instead of the indented statement following “::” above. This is illustrated further in the intro.rst
page, which looks like

Introduction
============

``exampy`` is an example Python package that contains some very basic math
functions. As an example, we can compute the square of a number as::

>>> import exampy
>>> exampy.square(3.)
# 9.

Similarly, we can compute the cube of a number:

.. code-block:: python

>>> exampy.cube(3.)
# 27.

A general method for raising a number to a given power is given by the
``Pow`` class. For example, to get the fourth power of 3, do::

>>> po= exampy.Pow(p=4.)
>>> po(3.)
# 81.

``exampy`` also includes a simple method for integrating a function,
in the ``exampy.integrate`` submodule. This submodule contains the
function ``riemann`` that approximates the integral of any
one-parameter function as a Riemann sum. ``riemann`` takes as input
(i) the function to integrate, (ii) the integration range's lower
limit and (iii) the upper limit, and (iv) optionally, the number of
intervals to divide the integration range in. For example, the
integrate the square function of the range [0,1], do::

>>> from exampy import integrate
>>> integrate.riemann(exampy.square,0,1)
# 0.35185185185185186

(continues on next page)
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(continued from previous page)

If we increase the number of intervals from the default (which is 10),
we get a better approximation to the correct result (which is 1/3)::

>>> integrate.riemann(exampy.square,0,1,n=1000)
# 0.33350016683350014

Here, I list the expected output with a comment such that these code-blocks can be copied verbatim
into a Python interpreter or into a jupyter notebook cell without raising an error. An interactive
Python session is represented by including the “>>>” prompt; this can be copied into the Python
interpreter or into jupyter notebook cells without any problem.

We then also include the installation.rst and intro.rst pages into the toctree directive
in index.rst as explained above and after that we run make html to get a set of pages that looks
as follows: index.html:

where we see that the different sections in installation.rst are included because we set :
maxdepth: 2 in the toctree directive. The installation.html is:

and intro.html:
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Thus, we now have the basic structure of a manual for our software package, which we can expand
upon by adding material and by adding pages. To make the manual more useful and attractive, I
give a brief overview of some commonly-used reStructuredText features that help with this and then
describe how to automatically include docstrings from your code as part of the documentation.

4.4 A brief tour of reStructuredText

reStructuredText has many features that you can all use in sphinx documentation and these notes
do not intend to give a comprehensive overview of these. The objective of this brief section is
to get you underway with the most commonly used features of reStructuredText when building
documentation; consult reStructuredText documentation and guides to learn about more advanced
functionality. A good quick-start guide is available on the reStructuredText webpage, where you
can also find full documentation and a cheat sheet.

As I have already discussed above, the basic lay-out of a reStructuredText page is set by headings
that are indicated by underlined lines. The type of symbol that you use to underline does not matter,
reStructuredText automatically figures out the hierarchy of titles and sub-titles based on your use of
different underline styles (”——” or “+++++++” or “========” or . . . .); this of course requires
you to use these consistently! If reStructuredText outputs a hierarchy that you did not intend, you
probably made a mistake in the consistency of your underline styles.

Basic italic emphasis is done by enclosing a word or sentence in single * as “*emphasize this*”
(rendered as emphasize this); bold emphasis is obtained by enclosing in double ** as “**strongly
emphasize this**” (rendered as strongly emphasize this). Double back-quotes are used for fixed-
width formatting, such as used when displaying inline code or as another way of emphasis (as
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used often in these notes): “``fixed-width code/emphasis``” (rendered as fixed-width code/
emphasis).

Lists start with a new paragraph (i.e., two line breaks) and are then simply a numbered or asterisked
set of paragraphs. For example, this is an unnumbered list

* First list item

* Second list item

* Third list item

which is rendered as

• First list item

• Second list item

• Third list item

To get a numbered list, use numbers, e.g.,

1. First list item

2. Second list item

3. Third list item

which is rendered as

1. First list item

2. Second list item

3. Third list item

Instead of a simple number like this, you can use upper- and lowercase letters, upper- and lowercase
roman numerals, and you can add a closing parenthesis “)” or enclose the entire number/letter in
parentheses.

Block quotes are done with indentation, e.g. “

Lists start with a new paragraph (i.e., two line breaks) and are then simply a numbered
or asterisked set of paragraphs. For example, this is an unnumbered list

(Python code packaging for scientific software, Jo Bovy).”

As already discussed above, code blocks can be written in two ways: (i) by ending the previous
paragraph in a double colon “::” and having an indented code block, e.g.,
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Using ``exampy``, we can compute the square of a number as::

import exampy
exampy.square(3.)
# 9.

This uses the default syntax highlighting language, which can be specified in the conf.py file
by setting the highlight_language parameter and by default is currently essentially Python.
Alternatively, you can insert a code block using the code-block directive where you can also
directly specify the language if you want it to be different from the default for a specific code block:

.. code-block:: language

used as

Using ``exampy``, we can compute the square of a number as:

.. code-block:: python3

import exampy
exampy.square(3.)
# 9.

Both of these will render as “Using exampy, we can compute the square of a number as:

import exampy
exampy.square(3.)
# 9.

“

Images can be included using the image directive that looks like

.. image:: image_filename.ext

which includes the image file with name image_filename.ext; options are

.. image:: image_filename.ext

:alt: alternate text for the image (like in HTML)

:height: height of the image (in length units or % of original)

:width: width of the image (in length units or % of original

:scale: integer percentage to scale height and width with

:align: "top", "middle", "bottom", "left", "center", or "right"
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:target: if set, make the image a hyperlink to this URL.

Typically, you should keep images in a separate directory in your source/ directory; you do not
need to tell sphinx about these in any way, sphinx will figure out that this directory exists and copy
over its relevant content. As an example, the first webpage image on this page was include using

.. image:: images/first-doc-index.png
:width: 66%
:align: center

You can also include LaTeX math in your manual, LaTeX builds will display this correctly and, us-
ing the MathJax Javascript library, LaTeX math can also be rendered in webpages; to include Math-
Jax support, you need to add the sphinx.ext.mathjax extension to your conf.py’s extensions
list. Then you can include inline math using the :math: directive as

An example of an inline math equation is Euler's identity :math:`e^{i\pi}
→˓+1 = 0` for complex numbers.

which is rendered as “An example of an inline math equation is Euler’s identity 𝑒𝑖𝜋 + 1 = 0 for
complex numbers.” We can also display equations on separate lines or an entire math block using
the math directive:

Euler's identity is

.. math::

e^{i\pi}+1 = 0

which is rendered as

” Euler’s identity is

𝑒𝑖𝜋 + 1 = 0

“

While you should avoid too much complex LaTeX math in docstrings, because they are often read
as pure text, the manual is typically read as a HTML page with properly typeset math, so you should
feel free to use as much LaTeX math as is necessary.

Finally, you likely want to include links to external webpages and internal links to other sections.
External links in reStructuredText have the format `link text <link-url>`__. Internal links
are a little trickier. If you want to link internally to a section or other part of the manual, you first
need to create a label, for example,
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.. _install-dependencies:

Dependencies
------------

``exampy`` requires the use of `numpy <https://numpy.org/>`__.

which could be part of the installation.rst file. Then, you can internally link to this section as
:ref:`install-dependencies`, that is, using the name without the initial underscore. If you
link to anything that isn’t right before a section as in the example above, you need to give the link
a title to be displayed as :ref:`Link title <label-name>, where label-name is again the
name that you used to label without the leading underscore.

A full list of possible reStructuredText directives is available here.

4.5 Including docstrings into the sphinx documentation

So far, the manual consists solely as manually-written help pages with notes on installation, a quick-
start guide, and any examples and tutorials. However, the manual should also include a full reference
of the documentation of all functions, classes, and methods in the software package: the API. One
could write this manually as well, going through the code and making an API entry for each func-
tion, class, or method, copying the docstring by hand, but sphinx has tools to automatically extract
docstrings that can be used to (semi-)automatically create the API. Besides requiring significantly
less work to set up, this has the advantage that the function signatures and docstrings are always
up-to-date with what’s written in the code package’s documentation itself.

As an example, we add a reference.rst file to the documentation that will contain the short API
for the exampy package. sphinx’s automation tools for documenting packages are contained in the
autodoc extension, which you can access by adding “sphinx.ext.autodoc” to the extensions list in
your conf.py file (this extension is part of sphinx, so does not need to be installed separately). The
autodoc extension contains various autoX directives that will automatically grab your package’s
docstrings and display them in the documentation. Commonly used ones are

.. autofunction:: func
Display the docstring for the function func

.. autoclass:: a_class
Display the docstring for the class a_class

:members::

where :members: is a list of member methods (e.g., method1,method2) to also document, that is,
display the docstring for; if the :members: option is set without any arguments, all public members
(those whose name does not start with an underscore) are shown. Without the :members: option,
only the class docstring is displayed.
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.. automethod:: a_method
Display the docstring for the method a_method

These directives have additional options that are discussed on the autodoc page, but that are not
commonly used.

Let’s first create an API of just the functions in exampy with autofunction. A simple API is
given by

API reference
=============

``exampy``
----------

.. autofunction:: exampy.square

.. autofunction:: exampy.cube

``exampy.integrate``
--------------------

.. autofunction:: exampy.integrate.riemann

Because we have used the numpy docstring style, we should add a further extension to create a
nicely-formatted version of this docstring in the resulting documentation page, napoleon, an official
sphinx extension that supports numpy docstrings (also part of sphinx itself and thus not requiring
special installation). We add "sphinx.ext.napoleon" to the list of extensions in the conf.py
file. After also adding reference.rst in the toctree in the index.rst file and running make
html, the following references.html page in the documentation is created:
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As you can see, the docstrings have been correctly grabbed from the package itself and the
napoleon extension creates a nicely-formatted listing of each. Also note how the functions in
the “See Also” section are live links.

The autoclass directive works similar to the autofunction one. Without any further op-
tions, it simply displays the class’ docstring (that is, the docstring immediately following the
class a_class(object): statement). You can document class members by listing them in the
:members: option. For example, to document both a class and its initialization method, do

.. autoclass:: a_class
:members: __init__
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If you give the :members: option without specifying any members directly, all member methods
will be included in the generated documentation. My recommendation is to always explicitly list
the members that you want to document, such that you do not include members without knowing
about it (similar to how one should never from package import *).

You can also document individual member methods of a class outside of an autoclass directive,
essentially doing the same as with autofunction. For this, use automethod, which is the same
as autofunction, except that you list the name of the as classname.methodname.

To illustrate autodoc’s handling of classes, we add documentation for the exampy.Pow class to the
reference page, by updating it to

API reference
=============

``exampy``
----------

.. autofunction:: exampy.square

.. autofunction:: exampy.cube

.. autoclass:: exampy.Pow
:members: __init__

.. automethod:: exampy.Pow.__call__

``exampy.integrate``
--------------------

.. autofunction:: exampy.integrate.riemann

which then creates
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It is a matter of taste how exactly one lays out the API. Some packages, such as numpy and my
own galpy package, use an individual page for each function, class, or method. That has the
disadvantage of leading to a lot of files for a large package. Other options are to use a single page
for everything (gets unwieldy) or a single page per submodule or class.
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To encourage users of your code to look at the source code (e.g., when they run into issues), you
can use the sphinx.ext.viewcode sphinx extension. When you add this built-in extension to the
extensions list in your conf.py file, a link will be added to each documentation function, class,
and method that leads to the source code for that function, class, and method. For example, for the
API page that we created, adding sphinx.ext.viewcode adds “[source]” links:

which when you click on them lead to, e.g.,

4.6 Including jupyter notebooks as part of your docu-
mentation

Up until now, the manual consists solely of a set of .rst files written in reStructuredText. However,
it is also possible to generate documentation pages from jupyter notebooks. This has many advan-
tages both from the standpoint of ease of writing the documentation and from making sure that the
documentation is as accurate as possible. Writing (parts of) your documentation as a jupyter note-
book allows you to run the code examples that you include directly, so you are sure that they work
without having to copy and paste code. You can also more easily include images, because jupyter
notebooks can easily generate inline figures that are part of the notebook. Typesetting LaTeX math
is also easier using jupyter notebooks, because you can directly see the result without having to
compile the documentation using make. Using jupyter notebooks for your documentation’s pages
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is so convenient that even if you don’t include many code examples, they can still be a good choice.
Indeed, these notes themselves are written as a set of jupyter notebooks and you can see how they
allow complex documentation to be written.

The easiest way to include jupyter notebooks in your documentation is by using the nbsphinx
sphinx extension. After installing this extension with

python3 -m pip install nbsphinx

(using the additional --user option for a user-specific install), you can start including notebooks
by simply adding “nbsphinx” to the extensions list in your conf.py file and then including .ipynb
files in your documentation’s toctree(s) just as you would add .rst files. For example, the main
toctree for these notes looks as follows:

.. toctree::
:maxdepth: 2
:caption: Contents:
:numbered:

01-Introduction.ipynb
02-Package-Structure.ipynb
03-git-and-GitHub.ipynb
04-Documentation.ipynb
05-Tests.ipynb
06-Continuous-Integration.ipynb
07-Package-Release.ipynb

The nbsphinx extension will automatically execute notebooks before rendering the documentation
if no output cells are stored. Thus, if you clear the output of the notebook before saving it, nbsphinx
will execute it and then render the documentation. This is a great feature to make sure that your
documentation’s code examples exactly reflect what the current version of the code does (which
with regular reStructuredText examples can be hard to keep up-to-date). However, if you store any
output, then automatic execution is turned off by default.

You can render almost anything in a standard jupyter notebook to sphinx-generated documenta-
tion: code cells and their output, Markdown cells, and raw cells in different formats. Note that when
you are combining both notebooks and regular reStructuredText files, the fact that the standard text
box in a notebook uses Markdown and not reStructuredText can get a little confusing (as it is in
writing these notes where I have to use both Markdown and reStructuredText in the same notebook
to properly display all content!). But generally, any code, LaTeX, and images in the notebook will
be seamlessly rendered as HTML, LaTeX, etc. pages.

The nbsphinx extension has many configuration values, which you typically can just leave at their
defaults. These can be used to control how the notebooks are executed when they are automatically
executed, and how to style notebook elements. One element that you may want to change is each
code cell’s prompt, which shows up by default. To remove the prompt, set
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nbsphinx_prompt_width = 0 # no prompts in nbsphinx

in the conf.py file. There is no easy way currently to remove the prompt from the generated
LaTeX/PDF documentation.

When you are dealing with notebooks, you will also want to set

exclude_patterns = ['.ipynb_checkpoints/*']

in your conf.py file to tell sphinx to ignore the automatically-generated checkpoint files; with-
out this, sphinx will process these files as well, which can lead to long build times, because these
files often change. When you are dealing with notebooks in a git repository (which your docu-
mentation should be in), you will also want to install a git plugin to show nicely-formatted diffs
of notebooks, because otherwise git diff will show you changes in the JSON file that is the
underlying representation of each notebook, which isn’t a particularly illuminating way to look at
changes. Therefore, install nbdime for this purpose.

As an example, we write the intro.rst page that we created above as a jupyter notebook
intro_notebook.ipynb that looks like

Adding this intro_notebook.ipynb file in the toctree in source/index.rst as

.. toctree::
:maxdepth: 2
:caption: Contents:

installation.rst
intro.rst
intro_notebook.ipynb

(continues on next page)
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(continued from previous page)

reference.rst

adding the nbsphinx extension in source/conf.py, and running make html then gives a docu-
mentation page that looks like

We see that the documentation page looks very similar to the one we created from intro.rst.

4.7 Automatically building and hosting your documenta-
tion on readthedocs.io

To host the documentation you generate using sphinx online, you could upload it to a dedicated
website (e.g., a GitHub Pages site), but readthedocs.io is a free online service that has become
the go-to destination for hosting code documentation online. readthedocs.io seamlessly inte-
grates with GitHub and sphinx and automatically generates multiple, easily-accessible versions
of your code’s documentation for different releases and for the development version, the latter of
which is updated upon every push of your code to GitHub. If you have working sphinx-based
documentation for your package, it is easy to get started with readthedocs.io and have your
documentation online quickly.

To get started, head to https://readthedocs.io, click on “Log in”, and sign in with your GitHub
account (you could make an account as well, but signing up with your GitHub account makes
syncing your readthedocs.io account with your GitHub repositories easier). You are brought
to your dashboard where you have the option to import a project. Click on that button to obtain
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a list of projects that you could import (these are your GitHub repositories; you may have to hit
refresh to get the list) and click on the one you want to start building online documentation for.
Once you confirm, you are brought to the readthedocs.io owner page for your project, which
looks as follows at the start:

You can click on “Build a version” to get a first build of the documentation going; this build will
likely fail, because it hasn’t been configured yet, but it will set up a webhook to automatically update
the documentation when you push changes to GitHub, which is convenient.

To configure a project on readthedocs.io, add a .readthedocs.yml configuration file, which
is documented here. A simple one to get started looks like

version: 2

sphinx:
configuration: docs/source/conf.py

python:
version: 3
install:

- method: pip
path: .

Here, version: sets the version of the readthedocs.io configuration file format to use (ver-
sion 2 is the latest, which I will use here, but version 1 is still the default); sphinx: tells
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readthedocs.io to use sphinx to build the documentation and states where the conf.py file
is located (readthedocs.io can also find it automatically, but it’s always best to be explicit), and
the python: section configures how to install the package and its dependencies (more on that be-
low).

Because readthedocs.io may be using an older version of sphinx that does not automati-
cally find your documentation’s master file if you named it source/index.rst (older versions of
sphinx assumed it was source/contents.rst), you also have to set master_doc = 'index'
in the source/conf.py file to explicitly tell sphinx which document contains the main toctree.
Adding this .readthedocs.yml file and this change to source/conf.py and pushing these
changes to GitHub, you will see that the nexxt build of your documentation commences auto-
matically on readthedocs.io. When your documentation builds successfully, you can click on
“View Docs” to see the online documentation (at https://exampy.readthedocs.io/en/latest/ for the
example package). This documentation looks like (this is the version before we added the source/
intro_notebook.ipynb jupyter notebook; see below)

As you can see, it looks almost identical to the documentation that we rendered locally above, but
now it is available online.

Including a jupyter notebook in the online documentation requires us to install nbsphinx on
the readthedocs.io build server. What gets installed as part of the build process is controlled
by the python: section of the configuration file. Above, we simply asked for the exampy pack-
age to be installed with pip install ., because I specified method: pip and path: . in the
install: section. This is a standard Python install and it therefore also installed exampy’s re-
quirements listed in the install_requires section of its setup.py file, but this does not contain
the nbsohinx requirement. We can add additional requirements using a requirements.txt file:
such a file could live at the top level of the git repository, in which case it would be an alternative
way of specifying the package’s dependencies (this is standard pip usage), but we can also include
a requirements.txt file in the docs directory that is specific to building the documentation. We
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will do that for nbxphinx, placing just that one line in docs/requirements.txt and updating
the readthedocs.yml to

version: 2

sphinx:
configuration: docs/source/conf.py

python:
version: 3
install:

- method: pip
path: .

- requirements: docs/requirements.txt

Pushing these changes to GitHub, the documentation gets built automatically, and it now includes
the jupyter notebook that we included.

Before you release a version, readthedocs.io will show only the latest version of your docu-
mentation, but when you create a release or a git tag, your readthedocs.io page will include
those versions, which you should give names like “1.2.1” etc. On your project’s admin page, you
have the option to edit the versions that are shown (for example, to remove old released versions,
although unless you have released in error, it’s best to keep old versions around for reference). You
can also build the documentation for other branches, which you should use sparingly, but it is useful
when you are developing a new feature with extensive documentation and you want to see what the
documentation looks like before merging this branch into your main branch.

Typically, the automatic builds on readthedocs.io work fine and once set up, you will have
to interact very little with the readthedocs.yml service, but you do have the option to trigger a
build yourself on your project’s admin page. That can be useful when a build failed because of some
issue installing a dependency (e.g., it briefly broke), and you want to re-build the documentation
without pushing new changes to GitHub. There is extensive documentation online (obviously . . . )
that allows you to easily make even complex changes to the way readthedocs.io serves your
documentation (like serving it from a custom domain).
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CHAPTER

FIVE

TESTING YOUR CODE

Thoroughly testing your code is crucial for allowing others (and yourself!) to use it confidently, for
maintaining your code long-term, and for developing new features. Testing your code needs to be
done continuously, that is, it is not long-term useful to perform a test of the implementation of a
new feature or of its integration with the rest of your package if you do not save the test and re-run it
every time the code changes; unfortunately, only testing code at its first implementation still remains
the main mode in which scientific software is tested. Instead you need to write a comprehensive
test suite that checks that your code keeps working the way you intend it to work as your package
grows and evolves.

Having a comprehensive test suite is essential for being as confident as you can be that your code
behaves correctly (of course, no test suite is 100% water tight). But having a comprehensive test
suite also helps you maintain and develop your package. A test suite makes maintenance easier,
because you can catch new problems early (e.g., an issue stemming from a change in a dependency),
when they are typically easier to solve. It is also easy to check that your package works with a
new minor (or major, but that will likely be a while) version of Python itself. It also helps you in
developing your code, especially in allowing large-scale changes to the underlying framework of
your package without changing the package’s user interface (or without changing it much). For
example, if you want to completely re-vamp the way a complex sub-module of your code with
many functions and classes is implemented, this is difficult to do without a comprehensive test
suite, because it would be difficult to be sure that no user-facing functionality changed. But with
a good test suite, you can be confident that your underlying changes do not break code that people
have that uses your package or the way they interact with your code. Having a comprehensive test
suite is also absolutely essential if you will be accepting pull requests from outside users (which
you should!): without a test suite, it would be very difficult to know that changes proposed in a pull
request (especially if there are many) do not break some part of your code (you would be surprised
at how easily even a small change in one part of your package can cause problems in unexpected
places).

In this chapter, I discuss the basics of testing your Python package, explain how to write good tests
for different aspects of your package, and how to build and run a test suite with pytest, the current
standard for Python testing. In this chapter, we will run this test suite by hand, but in the next
chapter, I will discuss how to use online continuous integration services to automatically run your
test suite on a set of external servers every time you change your code.
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5.1 Basics of good testing

Tests of a Python package are regular Python statements, functions, etc., just like any other Python
code. They become tests of your software package simply by virtue of context: tests are regular
Python files that live in a designated spot for tests of your package and that consist of a set of
statements checking that your code works as intended. At some level, any use of your package by
yourself and other users is a test of your code, because users will (or should) be sanity-checking
your code’s results and report issues if the results are incorrect or unexpected. But your package
should contain a dedicated set of tests, which we refer to as a test suite.

The first decision you have to make is where to put your tests. Tests should be part of the same
git repository that contains the package itself and then there are essentially two options: (i) you
can put the tests outside of the package itself, by putting them in a sub-directory of the top-level
directory of your package’s git repository, or (ii) you can incorporate the tests into the package
itself, that is, include them as a sub-directory within your Python package’s directory (or in a set of
sub-directories, e.g., to separate tests by submodule). The latter option allows you to include the
tests in distributions of your code, which may be useful to allow people who have installed your
code to run the tests themselves and verify that they pass on their system. However, I believe it is
better to choose option (i) and keep the tests outside of the package itself. This is for a few reasons:
(a) packages should be as light-weight as possible and a comprehensive test suite will be large (e.g.,
for galpy, the test suite currently contains about 30k lines, while the package itself has about 40k,
excluding comments and docstrings), (b) your package should be as well documented and tested
as possible, but you will likely not document the tests much and almost certainly not write a test
suite for the tests (and so on!), (c) your tests may have difficult-to-install dependencies that you do
not want users of your code to have to install, and (d) the main issues that users will run into are
installation issues; when they can install and load your code, it’s highly unlikely that a test of the
code’s functionality would fail, so there really isn’t too much point in normal users of your code
running the test suite themselves if you run it often yourself. Thus, you should include tests in a
tests/ sub-directory of your top-level directory, which therefore now looks like (for the exampy
example package from chapter 2 (page 8)):

TOP-LEVEL_DIRECTORY/
docs/
exampy/
tests/
README.md
setup.py

The tests/ directory then contains a set of Python .py files that contain tests of your code. For
a large software package, one option would be to mirror your package’s structure of sub-modules
and arrange tests in a similar directory tree under tests/, but typically it’s easy enough to simply
include a bunch of *.py files in the tests/ directory itself that test all of your package’s function-
ality in all of its submodules. To seamlessly integrate with the pytest test framework, your tests
should be arranged as follows:
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• Tests should be in files with filenames that start with test_ and end in .py, so for example,
test_basic_math.py will contain tests of the basic math included in exampy’s top-level
module (see below).

• Functions that contain tests to be run within the test files should start with test; if you
use classes to arrange tests, these need to start with Test. Your test files can include other
functions or classes, for example as helper functions/classes for your tests, but these will not
be executed as tests by pytest below.

I will focus on the case of using functions to write tests, rather than classes. Using classes for tests
is useful when your tests require common, expensive initialization procedures, which can easily be
done with a TestX test class, but is difficult when using functions. When this is not necessary, it
is easier to simply use functions that contain all of the setup for your test, such that they can stand
alone and can be run independently from each other. This is useful when diagnosing problems with
your tests or code, so you don’t always have to run the entire (or a large part of the) test suite.

It is a matter of taste how you arrange tests of different parts of your package into a set of test
files. One option is to have a single file per package file that contains the tests of that package file’s
functionality, but that leaves it unclear where to put tests of the integration of different parts of your
package. Another option is to use one file (or a few files, if a logical division can be made) for
each submodule and then include tests of the interplay between different submodules in the most
relevant submodule’s test file(s). However you choose to arrange your tests, use a logical structure
that makes it easy to find where tests are located for your future self and for other developers.

Before going on to describe how to write Python tests, it is useful to consider what are good prop-
erties of tests of a scientific software package and how to construct a good test suite:

• Many of your tests should be as minimal, short, and atomic as possible: you should strive to
make sure that each function in your package does what you intend it to do and that it does this
correctly; this is called unit testing. If your package is well written, it should consist mostly of
relatively small units (functions, classes, etc.) that work together to do more complex things.
Unit testing makes sure that the smallest units of code in your package work as intended,
because having all of the parts of a complex code work is a prerequisite to having the entire
complex code working correctly. Testing these small units of your package should be possible
with relatively brief tests: they should require as little setup as possible.

• Your test suite should include integration tests: Besides making sure that the atomic parts
of your code work correctly, you should test that they work together to create more complex
workflows that work as expected. Even if all of the individual parts of your code work to your
satisfaction, it can still easily be the case that their combination does not work as you intended
(this can be as simple as their outputs and inputs not being compatible, or more complicated
when, e.g., approximations that seem correct for parts of your code are not good enough for
their combination with other parts of your code). These integration tests will typically be
more complex pieces of Python code that more directly resemble actual use of your code, but
that’s okay.

• Your tests should run in as little time as possible: Having to wait for a long test-suite to run
before knowing whether or not your code contains bugs or other errors will strongly impede
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your progress (I should know, galpy’s test suite currently runs for close to an hour, even
when spreading the tests over six machines!). Thus, you want your tests to run fast. Because
a test suite for any decent-sized package will contain many individual test functions, each
of the individual test functions should run very fast in order for the entire test suite to run
quickly.

Of course, for complex scientific software, it is inevitable that some tests will require a longer
time to run (long in the context of tests starts at something like one second, and you should
definitely avoid any test that requires more than a minute to run). You might want to check
that your code works to a certain high level of precision and that level of precision requires a
long computation. In such cases, it is useful to also include a shorter version of the same test
if this is possible (for example, one that requires less time to get a lower precision result) that
can be run before the longer version of the test, such that not-too-subtle bugs can be found
using the shorter test without having to wait for the longer test to finish. Of course, this only
makes sense of the shorter test is significantly shorter, such that it does not increase the total
test runtime much.

• You should test outputs of your code as well as the important errors and warnings that it
raises: You want to focus your efforts on making sure that the values your code returns are
correct, but if your code raises errors in certain cases or warnings, it is important to test
whether these are raised appropriately as well.

• You should test setting non-default values for your functions’ keyword parameters: For all
functions with optional parameters, you should test that changing the value of any optional
parameters is properly handled by the code (e.g., to make sure you haven’t accidentally hard-
coded the value of an optional parameter somewhere). If you have more than one optional
parameter, it quickly becomes difficult to test all possible combinations of setting or not set-
ting keywords, but there is little harm in combining these and simply using a test that changes
the value of all keywords from their defaults.

• You want to have at least one test for each function, but it’s typically best to test many dif-
ferent invocations: Even for simple functions, try multiple values of the input arguments and
keywords to more extensively test the function. If your function has conditional statements,
this is likely necessary to obtain a high coverage, as we will discuss more below (because a
single invocation only tests a single path through your code’s conditional statements, thus not
testing the other paths).

• Add a test for each reported issue whose fix requires a code change: When users report
an issue with the code that requires you to change the code, add a test that checks that the
issue was fixed. This will prevent the issue from arising again in the future, e.g., when you
accidentally undo the fix later. Often the best way to start editing your code in response to a
reported issue is to first write a test that fails because of the issue and then make the fix in the
code; once the test passes you are ready to close the issue.

• You should document your test suite: Many tests of a scientific software package will be non-
trivial (e.g., checking the code against the result of an analytical calculation). To make sure
you remember what you were thinking when you wrote specific test, extensively document
your reasoning with code comments. Users will not (typically) be importing and using your
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test suite, so there is no need for true docstrings, but keeping a basic level of documentation of
all functions in your test suite will make it easier for you and other developers to understand,
use, and extend it.

Aside from these general desirable properties of a good test suite, the structure of good tests for
a scientific software package will depend strongly on the package itself. While including very
simple test cases of general functions is useful for catching major issues (e.g., testing the exampy.
integrate.riemann function with a constant function), be careful in only depending on the sim-
plest possible tests, because it is likely that these would not catch more subtle issues with your code
because they are too simple (i.e., even a slightly wrong version of your code might get them right
enough). In my own field of astrophysics, we often have analytical solutions for certain inputs of
computations that our code can perform in general and it is useful to test that such analytical solu-
tions are correctly reproduced (and it is good to test against non-trivial analytical solutions if they
exist). If a computational problem has no known analytical solution, we often still know of certain
properties that the solution should have or we have constraints on the solution and we can test that
these properties and constraints are satisfied (e.g., when solving the Newtonian equation of motion
for a conservative, time-independent force, we know that the energy associated with the solution is
conserved). Another way to test your code may be to compare it to an alternative solution, for ex-
ample, one that only applies in certain cases (but isn’t analytic) and/or one that is part of a different
package that should be consistent. As with documentation before, it is difficult to write too many
tests and as long as they run in a reasonable amount of time, erring on the side of testing your code
too much is better than not testing it enough!

5.2 Writing simple tests

To illustrate how to write basic tests, we will add some tests of the basic exampy functionality that
we implemented in the previous chapters. A more advanced discussion of test writing is inevitably
tied up with the framework that we choose to use to run the tests and, thus, I postpone a more
advanced discussion until the next section, where running tests with pytest is described in detail.

I start by adding a file test_basic_math.py in the tests/ directory that will contain tests of the
basic math contained at the top level of the exampy package. Thus, the top-level package directory,
expanded to one level looks now as follows

TOP-LEVEL_DIRECTORY/
docs/

build/
source/
Makefile
make.bat

exampy/
integrate/
__init__.py

(continues on next page)

5.2. Writing simple tests 75



Python code packaging for scientific software

(continued from previous page)

_math.py
tests/

test_basic_math.py
README.md
setup.py

As discussed above, I keep the tests outside of the package itself here.

The way we check in a test whether the code conforms to our expectations of how it should work
is using one or more assert statements that assert that a certain behavior holds. For example,
the simplest function in exampy is exampy.square and we check that this function returns the
square by checking a few known solutions. This is done in the following function that we add to
tests/test_basic_math.py

def test_square_direct():
# Direct test that the square works based on known solutions
import math
import exampy
tol = 1e-10
assert math.fabs(exampy.square(1.)-1.) < tol, \

"exampy.square does not agree with known solution"
assert math.fabs(exampy.square(2.)-4.) < tol, \

"exampy.square does not agree with known solution"
assert math.fabs(exampy.square(3.)-10.) < tol, \

"exampy.square does not agree with known solution"
return None

As you can see, I add a total of three assert statements that check the behavior of the square func-
tion against the known square of the numbers one, two, and three (which I worked out analytically
for you . . . ). Python assert statements have a very simple behavior: in the case of assert True,
msg, nothing happens and the statement following this is executed; in case of assert False,
msg, an AssertionError is raised and the msg string is printed, and msg should therefore contain
a useful message explaining what went wrong. Therefore, I have written the test of the square func-
tion as an assert that the result from the square function agrees with the known value to a known
absolute tolerance (using the math.fabs function). I have chosen to include the two import state-
ments to make this test a fully self-contained code example, but when this test file grows, you may
want to move these to the top level of the file, such that they do not need to be repeated in each
test (however, repeating them makes all of the tests self-contained code snippets, which may be
useful when developing and testing the tests). Note that you can also use the numpy.allclose func-
tion to test whether two numbers or arrays agree to some relative and absolute tolerance (e.g., as
numpy.allclose(exampy.square(2.),4.)), but I will not discuss that here.

I will discuss how to run the tests using the pytest commandline utility below, but for now you
could run the test manually by going to the tests/ directory, opening a Python terminal, and doing
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>>> import test_basic_math
>>> test_basic_math.test_square_direct()

which produces

AssertionError: exampy.square does not agree with known solution

We get this error, because I actually got the known solution of 32 wrong! To fix this, we change the
test to

def test_square_direct():
# Direct test that the square works based on known solutions
import math
import exampy
tol = 1e-10
assert math.fabs(exampy.square(1.)-1.) < tol, \

"exampy.square does not agree with known solution"
assert math.fabs(exampy.square(2.)-4.) < tol, \

"exampy.square does not agree with known solution"
assert math.fabs(exampy.square(3.)-9.) < tol, \

"exampy.square does not agree with known solution"
return None

Running the test again, we now get no output, indicating that the test passed.

As an example of testing a known property of the solution, we add a test of exampy.cube that
checks that this is an odd function, that is, that for example (−2)3 = −(2)3

def test_cube_oddfunction():
# Test of the cube function by checking that it is an odd function
tol= 1e-10
assert math.fabs(exampy.cube(1.)+exampy.cube(-1.)) < tol, \

"exampy.cube is not an odd function"
assert math.fabs(exampy.cube(2.)+exampy.cube(-2.)) < tol, \

"exampy.cube is not an odd function"
assert math.fabs(exampy.cube(3.)+exampy.cube(-3.)) < tol, \

"exampy.cube is not an odd function"
return None

Opening a Python terminal and running

>>> import test_basic_math
>>> test_basic_math.test_cube_oddfunction()

then returns nothing, indicating that the test passed. Of course, we could more simply write this
function as
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def test_cube_oddfunction():
# Test of the cube function by checking that it is an odd function
tol= 1e-10
for nn in range(1,10):

assert math.fabs(exampy.cube(nn)+exampy.cube(-nn)) < tol, \
"exampy.cube is not an odd function"

return None

and testing all the way up to 𝑁 = 9.

In cases where no relevant analytical solution is known or where no strong constraints exist on the
solution that provide enough piece of mind that satisfying them makes you confident that your code
works, you can also test against more approximate solutions or properties or against a different way
of solving the problem that may be available in another package. As an example of this type of test-
ing, I first implement a better approximate integration method in exampy.integrate, adding the
Simpson’s rule as the function exampy.integrate.simps, which (with documentation!) looks
like

def simps(func,a,b,n=10):
"""Integrate a function using Simpson's rule

Parameters
----------
func: callable

Function to integrate, should be a function of one parameter
a: float

Lower limit of the integration range
b: float

Upper limit of the integration range
n: int, optional

Number of major intervals to split [a,b] into for the Simpson rule

Returns
-------
float

Integral of func(x) over [a,b]

Notes
-----
Applies Simpson's rule as

.. math::

\\int_a^b \\mathrm{d}x f(x) \\approx \\frac{(b-a)}{6n}\\,\\
→˓left[f(a)+4f(a+h\ (continues on next page)
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/2)+2f(a+h)+4f(a+3h/2)+

\ldots+2f(b-h)+4f(b-h/2)+f(b)\\right]

See Also
--------
exampy.integrate.riemann: Integrate a function with a simple Riemann sum
"""

return (2.*np.sum(func(np.linspace(a,b,n+1)))
-func(a)-func(b) # adjust double-counted first and last
+4.*np.sum(func(np.linspace(a+(b-a)/n/2,b-(b-a)/n/2,n))))\
*(b-a)/n/6.

(note that I am not particularly concerned with implementing this in an efficient manner here). Sup-
pose we didn’t know any analytical integrals, then we could still check that exampy.integrate.
simps at least gives approximately the same answer as exampy.integrate.riemann, by includ-
ing a test in a new tests/test_integrate.py file like this

import numpy as np
import exampy.integrate

def test_simps_against_riemann():
# Test that simps and riemann give approximately the same answer
# for complicated functions
complicated_func= lambda x: x*np.cos(x**2)/(1+np.exp(-x))
tol= 1e-4
n_int= 1000
assert np.fabs(exampy.integrate.simps(complicated_func,0,1,n=n_int)

-exampy.integrate.riemann(complicated_func,0,1,n=n_
→˓int)) \

< tol, \
"""exampy.integrate.simps gives a different result␣

→˓from """\
"""exampy.integrate.riemann for a complicated function"

→˓""
return None

which tests that the function 𝑓(𝑥) = 𝑥 cos𝑥2/(1 + 𝑒−𝑥) is consistently integrated over the interval
from zero to one. The point of a test like this is to gain confidence in the validity of the imple-
mentation of the more complex method by making sure that it approximately agrees with a simpler
method; the thinking being that if they agree, the more complex one is probably implemented cor-
rectly, because otherwise it would be chance that they agree well. Of course, this assumes that you
have made a decent effort to implement the more complex method correctly, simply copying in the
simpler method as the more complex method would obviously also pass this test!
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We could also test that our integration routines are consistent with those in an external package,
scipy.integrate, by adding the following test to tests/test_integrate.py

def test_simps_against_scipy():
# Test that exampy.integrate.simps integration agrees with
# scipy.integrate.quad
from scipy import integrate as sc_integrate
complicated_func= lambda x: x*np.cos(x**2)/(1+np.exp(-x))
tol= 1e-14
n_int= 1000
assert np.fabs(exampy.integrate.simps(complicated_func,0,1,n=n_int)

-sc_integrate.quad(complicated_func,0,1)[0])\
< tol, \
"""exampy.integrate.simps gives a different result␣

→˓from """\
"""scipy.integrate.quad for a complicated function"""

return None

If you run this test, you will see that it passes, which given the 1e-14 tolerance demonstrates that
our exampy.integrate.simps method works very well! It is left as an exercise to write a test
that checks whether the error made by Simpson’s rule scales as the fifth power of the number of
intervals times the fourth derivative, as expected from the math behind Simpson’s rule.

5.3 Running a test suite with pytest

So far, we have been running the tests that we wrote above by going into the tests/ directory,
opening a Python terminal, and importing and running the tests manually. Test suite runners pro-
vide an easier way to run your tests, while also giving useful outputs of the status of your test runs
and providing much additional functionality to make test writing and running easier and more com-
prehensive. While there are different test runners available in the Python ecosystem (notably nose),
currently the dominant framework is pytest and we will focus on pytest in these notes. You can
install pytest as

pip install -U pytest

To get to know how pytest works, we run the tests that we have written so far in tests/
test_basic_math.py using pytest as

pytest -v tests/test_basic_math.py

in a regular terminal in the top-level of the package. This produces output that looks like
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============================= test session starts␣
→˓==============================
platform darwin -- Python 3.7.3, pytest-5.1.0, py-1.8.0, pluggy-0.12.0 --␣
→˓/PATH/
TO/PYTHON/BINARY
cachedir: .pytest_cache
rootdir: /PATH/TO/exampy
plugins: arraydiff-0.3, doctestplus-0.3.0, openfiles-0.4.0, remotedata-0.
→˓3.1
collected 2 items

tests/test_basic_math.py::test_square_direct PASSED ␣
→˓[ 50%]
tests/test_basic_math.py::test_cube_oddfunction PASSED ␣
→˓[100%]

============================== 2 passed in 0.07s␣
→˓===============================

This output shows the Python and pytest versions that you are using, the directory that you are
executing the command from, any plugins (ignore these for now), and then displays a verbose sum-
mary of the test run (obtained using the -v flag that we passed to the pytest invocation). The final
summary is that two tests passed and all is well. If we had run the pytest command before we
fixed the erroneous square of three in the test_square_direct function, we would have instead
gotten

============================= test session starts␣
→˓==============================
platform darwin -- Python 3.7.3, pytest-5.1.0, py-1.8.0, pluggy-0.12.0 --␣
→˓/PATH/
TO/PYTHON/BINARY
cachedir: .pytest_cache
rootdir: /PATH/TO/exampy
plugins: arraydiff-0.3, doctestplus-0.3.0, openfiles-0.4.0, remotedata-0.
→˓3.1
collected 2 items

tests/test_basic_math.py::test_square_direct FAILED ␣
→˓[ 50%]
tests/test_basic_math.py::test_cube_oddfunction PASSED ␣
→˓[100%]

=================================== FAILURES␣
→˓===================================

(continues on next page)
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______________________________ test_square_direct ________________________
→˓______

def test_square_direct():
# Direct test that the square works based on known solutions
tol = 1e-10
assert math.fabs(exampy.square(1.)-1.) < tol, \

"exampy.square does not agree with known solution"
assert math.fabs(exampy.square(2.)-4.) < tol, \

"exampy.square does not agree with known solution"
> assert math.fabs(exampy.square(3.)-10.) < tol, \

"exampy.square does not agree with known solution"
E AssertionError: exampy.square does not agree with known solution
E assert 1.0 < 1e-10
E + where 1.0 = <built-in function fabs>((9.0 - 10.0))
E + where <built-in function fabs> = math.fabs
E + and 9.0 = <function square at 0x1080fad90>(3.0)
E + where <function square at 0x1080fad90> = exampy.square

tests/test_basic_math.py:12: AssertionError
========================= 1 failed, 1 passed in 0.10s␣
→˓==========================

We see that both tests are still run, but that the first one failed. All failures are presented in a detailed
FAILURES section that contains a traceback of which assert statement failed and the components
of this assert statement are somewhat dissected, which is helpful in diagnosing what went wrong
in the test.

Besides the basic math tests, we have also already written tests of the exampy.integrate sub-
module. To run all tests of the package, we can do either

pytest -v tests/test_basic_math.py tests/test_integrate.py

that is, we specify both files directly, or

pytest -v tests/

Both of these give

============================= test session starts␣
→˓==============================
platform darwin -- Python 3.7.3, pytest-5.1.0, py-1.8.0, pluggy-0.12.0 --␣
→˓/PATH/
TO/PYTHON/BINARY

(continues on next page)
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cachedir: .pytest_cache
rootdir: /PATH/TO/exampy
plugins: arraydiff-0.3, doctestplus-0.3.0, openfiles-0.4.0, remotedata-0.
→˓3.1
collected 4 items

tests/test_basic_math.py::test_square_direct PASSED ␣
→˓[ 25%]
tests/test_basic_math.py::test_cube_oddfunction PASSED ␣
→˓[ 50%]
tests/test_integrate.py::test_simps_against_riemann PASSED ␣
→˓[ 75%]
tests/test_integrate.py::test_simps_against_scipy PASSED ␣
→˓[100%]

============================== 4 passed in 0.22s␣
→˓===============================

and we see that all four existing tests are run and that they pass. pytest has a rather straightforward
set of rules for discovering tests when you specify directories and files and which we summarized
above (page 72).

There are many options available when running pytest. Useful options of the command-line tool
are

• -x: Exit upon the first failure. This causes the test run to be interrupted as soon as a test fails.
The default is to run all tests and report all passes and all failures.

• -s: Print any stdout and stderr output produced by your code. The default behavior is to not
print these, but if you have, for example, print statements in your tests (e.g., when debugging
the tests) and you want these to show up, you need this option.

• -k EXPRESSION: Use this to only run tests with names that match the EXPRESSION. For
example, running pytest -v tests/test_basic_math.py -k square would only run
tests with square in their name. This is useful if you only want to run a single test or a subset
of related tests (e.g., when debugging tests or during the implementation of a new feature).

• --lf: Only run tests that failed during the previous invocation of pytest. This is helpful
when you have a situation where a test unexpectedly fails as part of a bigger test suite and
you are trying to fix the code or test to make the test pass again, without having to re-run the
entire test suite over and over. Once you’ve fixed the issue, make sure to run the entire test
suite again to make sure that your fix did not accidentally break something else!

• --disable-pytest-warnings: When your code emits warnings, pytest captures these
and prints them as part of a warnings summary at the end of the run. If your code emits many
warnings, this can clobber the entire output from the test run and setting this option turns off
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the warnings summary.

pytest has additional functionality to help you write tests for your code. For example, you will
want to test that your code correctly raises exceptions in cases where an exception should be raised.
pytest allows this through the raises context manager, which checks that a piece of code raises
a certain error. For example, the functions in exampy.integrate require that the to-be-integrated
function can handle array inputs, which fails when a function is provided that only works for scalar
inputs, as in the following snippet

>>> import math
>>> import exampy.integrate
>>> print(exampy.integrate.simps(lambda x: math.exp(x),0,1))

This raises

TypeError: only size-1 arrays can be converted to Python scalars

which is not a very useful error message for users of the code. To remedy this, we can edit the
source code for the exampy.integrate.simps function to catch this error and re-raise it with a
more informative error message. The code (without the docstring) becomes

def simps(func,a,b,n=10):
try:

return (2.*np.sum(func(np.linspace(a,b,n+1)))
-func(a)-func(b) # adjust double-counted first and last
+4.*np.sum(func(np.linspace(a+(b-a)/n/2,b-(b-a)/n/2,n))))\
*(b-a)/n/6.

except TypeError:
raise TypeError("Provided func needs to be callable on arrays of␣

→˓inputs")

such that if we run the snippet above, we now get

TypeError: Provided func needs to be callable on arrays of inputs

(in addition to the full traceback). Now we want to check that our code indeed raises this exception
properly when it encounters this situation, so we add a test to tests/test_integrate.py that
does this with the raises context manager; the new test is

def test_simps_typerror():
# Test that exampy.integrate.simps properly raises a TypeError
# when called with a non-array function
import math
import pytest
with pytest.raises(TypeError):

(continues on next page)

84 Chapter 5. Testing your code



Python code packaging for scientific software

(continued from previous page)

out= exampy.integrate.simps(lambda x: math.exp(x),0,1)
return None

This test passes. See for yourself what happens if you use with pytest.raises(ValueError):
; you should see that the test now fails with an informative (but long!) message about the raised
exception. If you want more fine-grained control over the tested exception, for example, to make
sure the correct TypeError was raised (not just any TypeError), you can get access to the full
error message with

with pytest.raises(TypeError) as excinfo

which has the type of the exception raised, the value of the exception message string, and
the traceback with the full traceback. You can then for example test that the message of the
TypeError is exactly the expected one as follows:

def test_simps_typerror():
# Test that exampy.integrate.simps properly raises a TypeError
# when called with a non-array function
import math
import pytest
with pytest.raises(TypeError) as excinfo:

out= exampy.integrate.simps(lambda x: math.exp(x),0,1)
assert str(excinfo.value) == "Provided func needs to be callable on␣

→˓arrays of inputs"
return None

Note that the assert on the raised error is outside and after the with pytest.raises(...) as
context manager

The second option is to use the match= keyword of pytest.raises, which checks whether the
error message matches an expected value, expressed as a regular expression. For example, we can
do

def test_simps_typerror():
# Test that exampy.integrate.simps properly raises a TypeError
# when called with a non-array function
import math
import pytest
with pytest.raises(TypeError,match="Provided func needs to be␣

→˓callable on arrays of inputs"):
out= exampy.integrate.simps(lambda x: math.exp(x),0,1)

return None

The with pytest.raises(...) as excinfo: syntax gives you more freedom to assert things
about the raised error, but for most use cases the match= method will do.
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Similarly, you can test that your code raises the expected warnings, with the pytest.warns context
manager, described in detail here. You will have to make sure that warnings are printed and not
suppressed to properly test warnings, for example, by doing warnings.simplefilter("always
",WARNING_CLASS) where WARNING_CLASS is a type of warning (e.g., DeprecationWarning).

Sometimes your test suite will contain tests that the current version of the code does not pass. This
could be for an in-progress fix of the code when you have already added the test that the code is fixed,
but the code hasn’t been fixed yet (this is good practice). Or you may have a test of old behavior
that no longer works, but you want to keep the test for historical reasons and for keeping a record
that this behavior changed (obviously, you want to do this very sparingly and only for important
changes; most tests that have become out-of-date should be edited and/or removed). Functionality
for this is part of pytest’s framework for skipping tests. What you can do is to label a test as an
expected failure, by marking it with the @pytest.mark.xfail decorator. For example, say that
we have started work on fixing the fact that exampy.integrate.simps fails for functions that
only work for scalar inputs and we write a test that should pass once this works; we first write this
test as

def test_simps_scalarfunc():
# Test that exampy.integrate.simps works even when called with a
# non-array function
import math
tol= 1e-7
assert np.fabs(exampy.integrate.simps(lambda x: math.exp(x),0,1)

-(math.e-1.)) < tol, \
"""exampy.integrate.simps does not work for scalar-

→˓input"""\
"""functions"""

return None

If we then run the test suite, the test fails with the TypeError: Provided func needs to be
callable on arrays of inputs error. However, if we mark it as

@pytest.mark.xfail
def test_simps_scalarfunc():

# Test that exampy.integrate.simps works even when called with a
# non-array function
import math
tol= 1e-7
assert np.fabs(exampy.integrate.simps(lambda x: math.exp(x),0,1)

-(math.e-1.)) < tol, \
"""exampy.integrate.simps does not work for scalar-

→˓input"""\
"""functions"""

return None

the test now XFAILs, that is, it is an expected failure. If the test does happen to pass, the test suite
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will still report the tests as being successfully run, which is not typically the behavior that you want,
because a test that is expected to fail, but that actually passes, is an unexpected behavior of the code
(and what tests truly establish is that your code behaves as expected, more so than that it behaves
correctly). By setting the strict=True parameter as

@pytest.mark.xfail(strict=True)
...

an expected failure that passes will now raise a test error. Other options of pytest.mark.xfail
allow you to provide a reason for the failure as the reason= keyword, the specific exception that
should be raised as the raises= keyword, and you can even make the test not run at all by setting
run=False (which is useful if the test’s failure crashes the interpreter and thus the entire test suite).

5.4 Test coverage

Now that we are well underway to writing a good test suite, an important question crops up: How
comprehensive is our test suite? That is, to what extend does the test suite actually test all of the
code included in the package and to what degree does it cover different ways different parts of
the package work together? Answering these questions is the domain of test coverage and in this
section I give a brief introduction to the important concepts to consider when worrying about your
code’s test coverage and how to use software tools to check your tests’ code coverage.

There are different coverage criteria depending on how thoroughly you want to define “coverage”:

• Function coverage (including class coverage and method coverage): This type of coverage
checks whether every function (or class, or method) of your package is called by the test
suite (and thus, if your test suite passes all tests, that there is a successful evaluation of each
function/class/method of your package). This is the first type of coverage you should aim to
have when starting to build a test suite. But if your functions contain conditional parts, then
100% function coverage can still leave many parts of your code untested.

• Statement coverage: Going beyond function coverage, this type of coverage demands that
each statement in your code is executed. Thus, 100% statement coverage means that every
single statement in your software package is executed at least once by your test suite. As I will
discuss further below, this is relatively easy to measure, realistic to attain, and achieving 100%
statement coverage is what your test suite should aim for. However, statement coverage may
still leave parts of your code untested, especially if your code is written in a way that gets
around statement coverage (see example below). To more fully characterize test coverage,
there are two more advanced coverage types.

• Branch coverage: This type of coverage checks that every branch in your code (e.g., the
three possible evaluations of an if: ... elif: ... else: ... block) gets executed by
your tests. Thus, for every conditional part of your code, your tests should go through each
possibility. More generally, branch coverage can mean testing every possible distinct path
through your code’s conditional statements. If your code contains more than a few conditional
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statements, the number of possible paths grows exponentially and in practice it becomes
impossible to test each possible path, but it is useful to keep in mind that testing different
paths through your code is a good idea. Measuring branch coverage is difficult.

• Condition coverage: If your code contains conditional statements with complex boolean ex-
pressions (e.g., if (x > 0 and y < -1):), then this type of coverage checks whether each
boolean sub-expression evaluates to both True and False in your test suite. That is, this goes
beyond statement coverage, which in this example could be achieved by the total boolean ex-
pression evaluating to True (and False if there is an else: statement as well), without
going through all possible combinations of boolean sub-expressions. Condition coverage is
also difficult to measure, but is a good standard to aim for when writing tests.

While branch coverage implies statement coverage, and statement coverage implies function cover-
age, statement coverage does not imply branch coverage, because of edge cases such as

if math.fabs(x) < 1e-10: x= 0

which as a line (which is the unit most tools for measuring coverage use) registers as executed no
matter whether the condition math.fabs(x) < 1e-10 is True or False. To avoid getting into
this situation, always start on a new line after an if, elif, else, for, while etc. statement (that
is, any statement ending in a colon :). Neither of condition coverage and branch coverage also
necessarily implies the other.

The only useful type of coverage in the end is that which can be easily measured while running your
test suite and this is statement coverage. While you should aim for as comprehensive as possible
condition and branch coverage, because these are difficult to measure they are hard to quantitatively
achieve.

The standard Python tool to measure statement coverage is coverage.py, which you can install with

pip install coverage

You can then run your tests while collecting test coverage information by replacing the standard

pytest ...

call with

coverage run -m pytest ...

This does not print any information on your test coverage, but simply collects the information for
use by other coverage commands and other tools (in the .coverage file). To obtain a report, run

coverage report

Thus, if we run
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coverage run -m pytest -v tests/
coverage report

we get

Name Stmts Miss Cover Missing
--------------------------------------------------------------
exampy/__init__.py 1 0 100%
exampy/_math.py 9 2 78% 73, 88
exampy/integrate/__init__.py 2 0 100%
exampy/integrate/_integrate.py 8 0 100%
tests/test_basic_math.py 13 0 100%
tests/test_integrate.py 27 1 96% 52
--------------------------------------------------------------
TOTAL 60 3 95%

As you see, this prints an overview of the number of individual statements, statements not run by
the test suite (in absolute and relative terms), and the line numbers for statements not run, for every
file. Note that the report also contains the files in the test suite. To limit the report to those files in
your package, use the --source option:

coverage run --source=exampy/ -m pytest -v tests/
coverage report

we now get

Name Stmts Miss Cover Missing
--------------------------------------------------------------
exampy/__init__.py 1 0 100%
exampy/_math.py 9 2 78% 73, 88
exampy/integrate/__init__.py 2 0 100%
exampy/integrate/_integrate.py 8 0 100%
--------------------------------------------------------------
TOTAL 20 2 90%

Sometimes you want to exclude lines or entire code blocks from coverage, for example, when you
have a conditional statement that goes to a general error that you do not feel needs to be tested or
when you include a function that is not used in the code and that users should not use, but that you
want to keep for later use (in that case, it’s probably best to remove it and keep it elsewhere for
future use, but this isn’t an ideal world. . . ). The standard method for doing this is to add a com-
ment # pragma: no cover at the end of the statement. For a regular statement, this excludes the
current line from the coverage report, but if you add it at the end of a function definition, a condi-
tional statement (e.g., if x < 0: # pragma: no cover), a for loop, or any statement ending in
a colon, then the entire following code block will be excluded. So for example, the entire function
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def fourth_power(x): # pragma: no cover
return x**4.

would be excluded from the coverage report. Once you put in this comment, the line will disappear
from the coverage report and you will get lulled into a false sense of security about your code’s
coverage (which will appear higher than it truly is), so this should be used sparingly for lines and
code blocks that truly can be ignored at little risk.

You can more generally exclude lines or files using a configuration file, which is by default a .
coveragerc file in the directory where you run the command; this file has the standard .ini
format (but does not end in this extension!), an example is

[run]
source= exampy/

[report]
# Regexes for lines to exclude from consideration
exclude_lines =

# Have to re-enable the standard pragma
pragma: no cover

# Don't complain if tests don't hit defensive assertion code:
raise AssertionError
raise NotImplementedError

# Don't complain if non-runnable code isn't run:
if 0:
if __name__ == .__main__.:

omit =
exampy/__init__.py
exampy/integrate/*

ignore_errors = True

[html]
directory = coverage_html_report

This sets the runtime option --source=exampy/ so that we don’t have to specify this by hand ev-
ery time we run coverage run, the [report] section uses the exclude_lines option to exclude
source lines that contain these expressions (we have to add the standard pragma: no cover, be-
cause otherwise it would be overwritten by the rules here), the omit option to exclude entire files
or directories (use very sparingly! This is a bad example!), and the ignore_errors to ignore any
errors when trying to find source files. The final section specifies where to place the HTML version
of the report, which is created by
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coverage html

instead of coverage report and when running with this .coveragerc file, the HTML page
looks like

Going forward, we remove the omit= part from the .coveragerc file so that all files are included
in the test coverage reports.

A different way of running the coverage script that is often more convenient is using the
pytest-cov plugin, which you can install with

pip install pytest-cov

then you can get the report in one go as (in our example):

pytest -v tests/ --cov=exampy/

which produces

============================= test session starts␣
→˓==============================
platform darwin -- Python 3.7.3, pytest-5.1.0, py-1.8.0, pluggy-0.12.0 --␣
→˓/PATH/
TO/python
cachedir: .pytest_cache
rootdir: /PATH/TO/exampy
plugins: arraydiff-0.3, cov-2.8.1, doctestplus-0.3.0, openfiles-0.4.0,
remotedata-0.3.1
collected 6 items

tests/test_basic_math.py::test_square_direct PASSED ␣
→˓[ 16%]
tests/test_basic_math.py::test_cube_oddfunction PASSED ␣
→˓[ 33%]
tests/test_integrate.py::test_simps_against_riemann PASSED ␣
→˓[ 50%]
tests/test_integrate.py::test_simps_against_scipy PASSED ␣
→˓[ 66%]

(continues on next page)

5.4. Test coverage 91



Python code packaging for scientific software
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tests/test_integrate.py::test_simps_typerror PASSED ␣
→˓[ 83%]
tests/test_integrate.py::test_simps_scalarfunc XFAIL ␣
→˓[100%]

---------- coverage: platform darwin, python 3.7.3-final-0 -----------
Name Stmts Miss Cover
----------------------------------------------------
exampy/__init__.py 1 0 100%
exampy/_math.py 9 2 78%
exampy/integrate/__init__.py 2 0 100%
exampy/integrate/_integrate.py 8 0 100%
----------------------------------------------------
TOTAL 20 2 90%

========================= 5 passed, 1 xfailed in 1.15s␣
→˓=========================

To also get the line numbers of statements not run as part of the test suite, do

pytest -v tests/ --cov=exampy/ --cov-report term-missing

To get the HTML version, do

pytest -v tests/ --cov=exampy/ --cov-report html

which without the omitted files looks like

If your package contains non-Python code, for example, compiled C code to speed up computations,
and you want to check the test coverage of this code as well, you need to use additional tools. This is
too advanced of a topic to cover in detail here, but to get you on your way here is an overview of the
process for C code: (i) to collect coverage information, you need to compile your C code without
optimization (-O0) and with the gcov coverage option -coverage (in compilation and linking).
This will allow the gcov coverage tool to collect coverage information for any execution of your
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code (similar to what coverage run does above); (ii) use lcov to generate a coverage report, e.g.,
with commands like lcov --capture --base-directory . --directory build/temp.
linux-x86_64-3.7/exampy/ --no-external --output-file coverage.info which col-
lects the coverage information into the coverage.info file, (iii) generate a HTML page with the
coverage reports with, e.g., genhtml coverage.info --output-directory out. The online
services that I discuss in the next chapter also allow you to combine Python and C coverage reports
into a single HTML overview.
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CHAPTER

SIX

AUTOMATICALLY BUILDING AND TESTING YOUR CODE:
CONTINUOUS INTEGRATION

Once you have a test suite for your Python package (even if it is not complete yet), you will want to
run it often to check that all tests continue to pass as your package evolves. Doing this automatically
is the domain of continuous integration and for scientific projects it is most easily done using the
free, online services that I discuss in this chapter. Like complete documentation and a compre-
hensive test suite before, continuous integration is an essential component of a modern software
package that is used by more than a few people and/or receives contributions from outside users
(e.g., through pull requests). Setting up continuous integration for your software package will end
up saving you lots of time by finding issues with your code quickly and making it less likely that
you merge a change that has unexpected, bad consequences.

6.1 Why continuous integration?

Continuous integration (CI) is the practice of integrating all changes into the “main” copy of a code
base (here, a Python package) on a frequent basis (“continuously”). The “main” copy in our case
is the GitHub repository of the package, which is the basis of all clones and forks of the code (I
assume throughout these notes that the only way the development version of the code is shared
is through the GitHub site, even for versions used by the same developer). The main reason to
perform continuous integration is to catch any unmergeable changes to the code made in different
copies of the code quickly when they can typically be more easily resolved. Continuous integration
checks both that the package builds successfully and that it passes the tests in the test suite and this
is considered to be a successful integration.

To perform continuous integration efficiently, both the build and test system need to be automated,
that is, they should be able to be run without any human intervention. We have seen how to build
a test suite that can be run with a simple pytest command in the previous chapter (page 71); I
will discuss how to automate the build with specific examples below. Automating the building and
testing of the code is important for taking any human decisions and mistakes out of the loop and
for being able to perform the continuous-integration procedure very often.

What do we in practice mean by “continuous”, because obviously we aren’t running the build-
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and-test procedure all the time? “Continuous” qualitatively means that we run the build-and-test
procedure every time the code or any of its dependencies change. In practice, it is easier to know
when one’s own code changes than when the code’s dependencies change and we typically run the
continuous-integration procedure upon every push of changes to GitHub. That is, we can make
multiple commits and run the integration tests each time we push a set of commits to GitHub.
Ideally, we would run the integration tests in conjunction with each commit, but since integration
tests can take a long time to run, a compromise of running whenever we think the code is ready for
a push to GitHub is good and it is easy to set up with automation services. This does mean that one
should push changes to GitHub often, typically at least once a day, to make sure that the continuous
integration procedure is run often. The code will also change in response to patches or new features
submitted through a pull request and it is good practice to run the continuous-integration procedure
before merging changes from a pull request. It is easy to set this up to be done automatically and,
indeed, having continuous integration set up is essential to being able to merge pull requests for
your package, because otherwise it is difficult to know that the proposed changes do not break
some unexpected part of your code. One typically runs the continuous-integration procedure for
changes to any branch, not just main.

The way your code runs also changes when its dependencies change. While one could in principle
set up a “continuous” check for whether dependencies have changed, in practice this is easiest to
spot by running the continuous integration procedure on a fixed schedule in addition to any runs in
response to pushes or pull requests. That way, you can ensure that the integration tests are run even
when the code is going through a stretch of minor development. These fixed-schedule tests could
be run daily or weekly, depending on how often you think dependencies might change and/or how
quickly you think you need to catch this. One way in which the automated build-and-test of your
code is useful is that it shows that there is a working version of your code and how to get it to work,
which you can point people to who have issues with installing and running your code.

The advantages of continuous integration are many: you will find issues quickly, keep your devel-
opment version in a working state and, thus, always have a fully-functional version of your code
during development (that is, not just at releases), and by making use of automated tools to run your
integration tests on different types of machines you are able to easily make sure that your code
runs on all systems that you support, not just your own. But there are disadvantages as well, the
main one being that setting up and maintaining the continuous-integration system takes quite a bit
of time and quite often issues that pop up during the integration procedure are due to the way the
build-and-test procedure is set up (which can be quite complex for a larger Python package), rather
than being due to a real bug in the package itself. For example, the way you install dependencies
in the integration step might break and you then have to fix that to keep the continuous-integration
procedure working, even though there is likely nothing wrong with your code. Overall, I think even
this type of time is well spent, because it is important to know at all times that your code can be
built (including its dependencies).

There are many services available to perform continuous integration of code, because continuous
integration is a crucial aspect of all modern software and software-backed services, allowing bug
fixes and updates to be rolled out quickly and often. Continuous integration of course goes far
beyond Python packages and is used in the entire range of software, apps, and online services, where
it is often combined with continuous deployment (CD, leading to the abbreviation CI/CD), the
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practice of rolling out bug fixes and updates as soon as they are made and pass the integration tests.
The most popular CI/CD services are Travis CI, Circle CI, Jenkins, AppVeyor, and since
recently GitHub Actions. I will only discuss Travis CI, AppVeyor, and GitHub Actions
below, but to a large degree they all work in the same way.

6.2 Continuous integration with Travis CI

Travis CI is a continuous-integration service that is seamlessly integrated with GitHub and is
free for open-source projects, generously providing you with multiple runners for your build-and-
test integrations. The way Travis CI works is that you connect it to your GiHub account, give it
access to your repository, and once configured it will automatically run your build and test suites
every time you push to any branch and every time somebody opens a pull request. It will notify you
when things go wrong (or when things go right! But that’s not typically as interesting. . . ) and can
send the results from tests on to other services (e.g., those that parse and display your test coverage
statistics).

To get started, go to https://travis-ci.com/ and sign up with your GitHub account. You then
need to give Travis CI permission to access your account’s information. Once you’re back at
travis-ci.com, you can click on your profile picture to bring up a big green Activate button,
press this to activate the GitHub Apps integration which Travis CI uses to start testing and de-
ploying on Travis CI. Once you have clicked this, you will see a list of your repositories, if you
click on the repository that you want to add to Travis CI, you will be brought to its page, which
looks like this for the example package exampy at first

To start building and testing our package with Travis CI, we have to add a .travis.yml config-
uration file to the top-level directory of our repository and push this to GitHub. This .travis.yml
file will contain all of the information to configure the build-and-test procedure on Travis CI. I
will go over all of the parts in due course, so let’s start with the simplest possible configuration for
our exampy project, which looks like
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language: python

python:
- "3.7"

install:
- python setup.py develop

script:
- echo 0

This configuration file does only the most basic things: (i) it states what the language of the code is
(Python) and what version to use, (ii) it installs the code in the install: section, and (iii) it has a
trivial statement in the script: section, which will later contain the running of the test suite. The
reason that we need to add the trivial statement in the script: section is that without this section,
Travis CI will label the run as failed. If you add this file to the GitHub repository and push it to
GitHub, Travis CI is notified by GitHub that a change occurred in the repository, and Travis
CI starts running the continuous integration procedure; the page on Travis CI will change to
something like

(where the run should be #1 for you, I messed up my own first run. . . ). If you scroll down, you
see the full log of what happened and you will see that Travis CI clones your repository, sets up
Python, runs the install: section, followed by the script: section:
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Next, we want to run our test suite with pytest and print the test coverage information using the
pytest-cov plugin. To do this, we need to install pytest and the pytest-cov plugin in the
install: section as well, and then run our test suite in the script: section, such that .travis.
yml file now looks as follows

language: python

python:
- "3.7"

install:
- pip install pytest
- pip install pytest-cov
- python setup.py develop

script:
- pytest -v tests/ --cov=exampy/

Pushing this change to GitHub, Travis CI automatically clones the updated repository and runs
the build-and-test procedure. However, the tests fail, with the pertinent part of the log being

The tests failed, because we forgot to install scipy, which is not a dependency of the exampy
package itself (and, thus, we didn’t list it in the install_requires section of the setup.py file),
but it is a dependency of the test suite, because in one test we compare the exampy.integrate.
simps procedure to numerical integration in scipy. Thus, we need to also install scipy, using the
following .travis.yml

language: python
(continues on next page)
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(continued from previous page)

python:
- "3.7"

install:
- pip install pytest
- pip install pytest-cov
- pip install scipy
- python setup.py develop

script:
- pytest -v tests/ --cov=exampy/

This time the tests pass without a hitch!

The .travis.yml configuration file has lots of possible sections to customize your build and test
runs in any way that you want, which are documented in full here. When you are using the linux
operating system (the default), you have access to a full Ubuntu distribution and you can run arbi-
trary commands in the sections install:, before_install: (which contains commands to run
before the installation of your code; technically it would have been better to install the test depen-
dencies in the before_install: section, or in the before_script: section [see below] because
they are not necessary for the code’s installation itself), script:, before_script:, etc. There
are also many other sections that allow you to install some dependencies more easily, to define en-
vironment variables, to run your build-and-test integrations with different versions of dependencies
(and Python itself), and there are sections after_success: and after_failure: to customize
what Travis CI does upon successful or unsuccessful execution of your build-and-test run. In the
remainder of this section, I will cover some of the most commonly-used customizations.
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As a first example of a customization, let’s say we want to explicitly specify the numpy version
used by our code. To do this, we add an env: section that contains an environment variable
NUMPY_VERSION that we set to the desired version. Then we can use this environment variable
in the rest of the configuration file, e.g., as

language: python

python:
- "3.7"

env:
- NUMPY_VERSION=1.18

before_install:
- pip install numpy==$NUMPY_VERSION

install:
- python setup.py develop

before_script:
- pip install pytest
- pip install pytest-cov
- pip install scipy

script:
- pytest -v tests/ --cov=exampy/

where we have now explicitly included the numpy dependency install in the before_install:
section (previously, we used the default numpy version available for this Travis CI disk image)
and we have moved the installations that are only necessary for the test suite to the before_script:
section. Pushing this change to GitHub, the log on Travis CI now shows that the requested version
of numpy is installed, with the relevant part of the log being:
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You can set multiple environment variables in the env: section, but note that all definitions should
be part of a single dash. E.g., to also specify the scipy version, do

language: python

python:
- "3.7"

env:
- NUMPY_VERSION=1.18

SCIPY_VERSION=1.4

before_install:
- pip install numpy==$NUMPY_VERSION

install:
- python setup.py develop

before_script:
- pip install pytest
- pip install pytest-cov
- pip install scipy==$SCIPY_VERSION

script:
- pytest -v tests/ --cov=exampy/

rather than

...
env:

(continues on next page)
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- NUMPY_VERSION=1.18
- SCIPY_VERSION=1.4

...

because the latter would create two jobs, one with the numpy version set, the other with the scipy
version set (see below). Another use of environment variables is to split your tests into sets to be
executed in parallel, by explicitly setting the test files fed to pytest as an environment variable.

One of the great advantages of using a cloud-based continuous-integration system is that you can
easily test your code with different versions of Python and your code’s dependencies. Travis CI
allows you to easily build matrices of jobs, by taking multiple values listed in some of the configu-
ration sections. For example, if you list two major Python versions in the python: section and three
minor numpy versions in the env: section as above, naively following the recommendations from a
recent proposal for which Python and numpy versions packages should support (the recommenda-
tion isn’t actually to support all of these combinations), Travis CI will run 6 different jobs, one
for each combination of Python and numpy version. In the example that we have been considering,
this gives the following .travis.yml:

language: python

python:
- "3.8"
- "3.7"

env:
- NUMPY_VERSION=1.18
- NUMPY_VERSION=1.17
- NUMPY_VERSION=1.16

before_install:
- pip install numpy==$NUMPY_VERSION

install:
- python setup.py develop

before_script:
- pip install pytest
- pip install pytest-cov
- pip install scipy

script:
- pytest -v tests/ --cov=exampy/

Pushing this to GitHub, we see that the Travis CI page for the current build-and-test integration
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looks as follows when the integration test is in progress:

Rather than seeing the log for a single job, we now see an overview of the six created jobs for the six
combinations of Python and numpy versions. Some of these run in parallel. Clicking on one of the
jobs will bring up the log for that particular job and Travis CI will report the status of each job
as either a success or a failure; the entire combination only succeeds if all component jobs succeed
(unless you allow failures). Once all jobs finish running, the final status looks as follows:

We see that one job failed! Another thing you notice when looking at the duration of each job is
that the Python v3.8 / numpy v1.18 and all of the Python v3.7 finish in about 30 seconds, the other
two Python v3.8 jobs run for about three minutes. Upon inspection of the logs, it becomes clear that
the reason for this is that for these two jobs, no binary wheels for numpy are available; I will discuss
binary wheels more in Chapter 7 (page 129), but for now the important thing to know about them
is that they allow you to install a package with pip without building it on your computer (which is
what pip normally does). Thus, for these two versions, pip install numpy builds numpy from
source and this takes a while. These wheels aren’t available, because the correct reading of the
NEP 29 proposal is that Python 3.8 only needs to support numpy version 1.18 and numpy therefore
did not build binary distributions for earlier numpy versions with Python 3.8. For the Python v3.8
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/ numpy v1.17 combination, the build from source actually fails on Travis CI, which is the cause
of this job’s failure.

When your code includes a few dependencies that take a long (more than a dozen or so seconds)
time to build from source (e.g., numpy and scipy), it is beneficial to use the Anaconda Python
distribution, which includes built versions of many packages that you might use. Because the entire
Anaconda distribution is large and your Travis CI runs would have to download it every time,
it is good to use the Miniconda version of Anaconda instead, which is a bare-bones version of
Anaconda that comes with very few packages pre-installed to create a light-weight distribution.
Using Miniconda requires us to add a few lines to the before_install: section to download
Miniconda, set it up, and use it to install the dependencies. Note that we need to make sure that
Miniconda gets set up for the same Python version that we requested in the python: section, by
using the $TRAVIS_PYTHON_VERSION environment variable that Travis CI automatically defines
(but note that the Miniconda Python version does not have to be the same as the one specified in
the python: section; keeping them the same using the $TRAVIS_PYTHON_VERSION environment
variable is useful to avoid confusion though).

Re-writing the example above using Miniconda looks like

language: python

python:
- "3.8"
- "3.7"

env:
- NUMPY_VERSION=1.18.1
- NUMPY_VERSION=1.17,4
- NUMPY_VERSION=1.16.6

before_install:
- wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_

→˓64.sh -O miniconda.sh
- bash miniconda.sh -b -p $HOME/miniconda
- export PATH="$HOME/miniconda/bin:$PATH"
- hash -r
- conda config --set always_yes yes --set changeps1 no
- conda update conda
- conda config --add channels conda-forge
- conda create -n test-environment python=$TRAVIS_PYTHON_VERSION

→˓"numpy==$NUMPY_VERSION" scipy pip
- source activate test-environment

install:
- python setup.py develop

(continues on next page)
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(continued from previous page)

before_script:
- pip install pytest
- pip install pytest-cov

script:
- pytest -v tests/ --cov=exampy/

Note that I have taken advantage of the fact that scipy can also be more easily installed using conda
to simply include it in the main conda create command in the before_install: section. I also
specified the exact version of numpy to use, because otherwise for, e.g., v1.17 conda tries to install
v1.17.0 (which in this case fails, because it does not exist in Anaconda for Python 3.8).

This run now was successful, with the overview at the end looking like

Each job now takes about a minute to run, showing that using Miniconda significantly speeds up the
run compared to building numpy from source (which above led to a > 2 minute job time; building
scipy from source would more than double that).

At this point, your email inbox will be filled with emails from Travis CI telling you about the
status of each integration run. You typically do not want to be updated about the status of every
run, but simply when the status changes. For example, if a set of runs all end successfully, it’s not
that useful to get an email about this every time, but if a run suddenly fails, you will want to know
that. Similarly, if your runs have been failing, it’s useful to know when they start passing again
(although that you will more likely be checking on the website directly). To only get notified upon
a change in status from success to failure or failure to success, add a section to your .travis.yml
file at the end that looks like

notifications:
email:

recipients:
- YOUR_EMAIL

(continues on next page)
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on_success: change
on_failure: change

Other useful parts of the .travis.yml file that I will not discuss in detail are:

• addons: allows you to specify dependencies that can be installed using, e.g., standard linux
tools like apt-get. For example, to use the GNU scientific library, use

addons:
apt:

packages:
- libgsl0-dev

• If your tests make plots, you will run into errors, because the plots cannot be displayed. To
avoid those, include the xvfb service that allows you to run graphical applications without a
display:

services:
- xvfb

• Building a matrix of jobs by multiplying options set in sections such as python: and env:
quickly leads to large build matrices. If you just want to include an additional job with differ-
ent parameters, you can include individual jobs in the matrix: section, e.g., include a single
job that uses Python v3.6 and numpy v1.18.1 with

matrix:
include:

- python: "3.6"
env: NUMPY_VERSION=1.18.1

You can also exclude jobs from the matrix, for example, to actually follow the NEP 29 support
proposal, you can exclude the unnecessary jobs for Python 3.8 in the Travis CI configura-
tion that I discussed just before the Miniconda discussion, as

matrix:
exclude:

- python: "3.8"
env: NUMPY_VERSION=1.17

- python: "3.8"
env: NUMPY_VERSION=1.16

Full documentation on the build matrix is given here.

Finally, by default, Travis CI will run when you push a new commit or set of commits to GitHub
(for any branch) or when someone opens or updates a pull request (in that case, Travis CI will
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automatically add status updates on whether the integration tests pass to the pull request’s page). If
in addition to this, you want the build of, say, your main branch to happen at least weekly whether
or not a change occurred, you can do this with a “cron job” by going to your package’s Travis
CI page and navigating to the “Settings” under the “More Options” menu. There, there is a “Cron
Jobs” part where you can choose a branch, how often to run (daily, weekly, or monthly currently),
and whether to always run or run only if there hasn’t been a commit in the last 24 hours. This page
looks as follows if you add the main branch on a weekly schedule, only running when there hasn’t
been a change in the last day:

I will discuss how you can process test coverage with Travis CI below (page 118).

A final note: getting the installation of your dependencies, the build of your own package, and the
test suite to run on Travis CI can be difficult and you will often end up with frustrating failed
builds that are difficult to diagnose. In writing this section, I ran into syntax errors and unexpected
behavior multiple times. Unfortunately, there is nothing much you can do about this, because as far
as I am aware one cannot replicate the Travis CI builds locally to test them before running them
on Travis CI. But there is lots of info in the online documentation and on the web to help you out
and in the end it’s worth the effort to know that your package is working as you expect at all times.

6.3 Continuous integration for Windows: AppVeyor

Travis CI is great for testing your integration suite on a Linux operating system and it also has
support for Mac OS X, although in practice running Python packages on Macs is so similar to
running on Linux that there is little reason to test Mac OS X separately. But if you want to support
Windows users, you will want to build and test your code on Windows, because there are subtle
ways in which pure Python programs that you think are universal will fail on Windows (e.g., if you
explicitly write paths as /path/to/file rather than using os.path.join, which would properly
put in the backslashes for Windows) and any compiled code will require significant modifications
to run under Windows. While Travis CI has some support for Windows, only a limited set of
features is available. However, AppVeyor is a continuous-integration system that is built around
supporting Windows and it, like Travis CI, allows free use for open-source projects (although
under somewhat less generous terms: only a single runner is available at any time).

Overall AppVeyor works similar to Travis CI. To start using it, sign in with your GitHub account,
add your project by choosing among your GitHub repositories that will be displayed when you log
in, and configure your build with a .appveyor.yml file (there is also a user interface, but it’s
easier to configure AppVeyor similar to Travis CI with a .yml file and you cannot both use the
.appveyor.yml file and the user interface). The structure of the .appveyor.yml file is broadly
similar to the .travis.yml file, with sections to set up the environment, the matrix of builds,
the installation of dependencies and of the package itself, and a section to run the tests. AppVeyor
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builds run in the CMD shell or the Windows PowerShell, a shell that is similar in spirit to Unix-type
shells, but quite different in many ways; I will mainly use the CMD shell, because it is more similar
to Unix-style shells (but you can mix CMD and Powershell within a single .appveyor.yml file).
You can write arbitrary commands just as in the .travis.yml file. This is a good time to point out
that if you want to make your code work on Windows and set up the AppVeyor integration tests,
it’s helpful to have a Windows machine around to test things locally. If you don’t have a Windows
computer at hand, you can use a virtual machine, such as VirtualBox.

To illustrate the structure of the .appveyor.yml file, let’s write the equivalent of the simple single-
Python-and-numpy that we got working in the previous section. This looks as follows

build: off

environment:
PYTHON: "C:\\Python37"

install:
- "set PATH=%PATH%;%PYTHON%\\Scripts"
- "%PYTHON%\\python.exe -m pip install pytest"
- "%PYTHON%\\python.exe -m pip install pytest-cov"
- "%PYTHON%\\python.exe -m pip install scipy"
- "%PYTHON%\\python.exe setup.py develop"

test_script:
- pytest -v tests/ --cov=exampy/

Provided that we have added our package to our AppVeyor account, pushing this .appveyor.yml
file to the package’s GitHub repository will trigger a run of the AppVeyor integration test and we
see the log in a similar way under the “Current build” as in Travis CI:

What happens in this .appveyor.yml file is the following: (i) we turn build: off, because
build: is a MS-specific build process that we don’t use for Python packages, (ii) we choose one of
the pre-installed Python versions, (iii) we install dependencies and the package in a similar way as
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in .travis.yml, with some Windows-specific tweaks, and (iv) we run the test script. Note that we
need to add the C:\\Python37\\Scripts directory to the PATH, because otherwise the pytest
script is not found. Similar to Travis CI above, getting the AppVeyor integration runs to work
can be a bit of trial and error and as you can see above, it took me six tries to get this simple example
to work properly!

Note that you can use both CMD and PowerShell syntax in the same .appveyor.yml, you simply
need to prefix any PowerShell statements with ps:, for example, you can do the path assignment in
the PowerShell in the example above:

build: off

environment:
PYTHON: "C:\\Python37"

install:
- ps: $env:PATH="$env:PATH;$env:PYTHON\\Scripts"
- "%PYTHON%\\python.exe -m pip install pytest"
- "%PYTHON%\\python.exe -m pip install pytest-cov"
- "%PYTHON%\\python.exe -m pip install scipy"
- "%PYTHON%\\python.exe setup.py develop"

test_script:
- pytest -v tests/ --cov=exampy/

Like with Travis CI above, you can define matrices of jobs to run and you can also use Miniconda
to run Python, which is natively installed, so you don’t have to download Miniconda like on Travis
CI. One limitation of the build matrices on AppVeyor is that you cannot automatically multiply
different environment variables, but you have to write out all combinations by hand. So to follow
the recommendations from the NEP 29 proposal about which Python/numpy versions to support (see
discussion above), we simply write out all four combinations. Using Miniconda for dependencies,
this can be achieved with the following .appveyor.yml

build: off

environment:
MINICONDA: C:\\Miniconda37-x64

matrix:
- PYTHON_VERSION: 3.8

NUMPY_VERSION: 1.18.1

- PYTHON_VERSION: 3.7
NUMPY_VERSION: 1.18.1

(continues on next page)
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- PYTHON_VERSION: 3.7
NUMPY_VERSION: 1.17.4

- PYTHON_VERSION: 3.7
NUMPY_VERSION: 1.16.6

install:
- cmd: call %MINICONDA%\Scripts\activate.bat
- cmd: conda.exe update --yes --quiet conda
- "set PATH=%MINICONDA%;%MINICONDA%\\Scripts;%PATH%"
- conda config --set always_yes yes --set changeps1 no
- conda info -a
- "conda create -n test-environment python=%PYTHON_VERSION% numpy==

→˓%NUMPY_VERSION% scipy"
- activate test-environment
- python setup.py develop"

before_test:
- pip install pytest
- pip install pytest-cov

test_script:
- pytest -v tests/ --cov=exampy/

Note that here I use the Miniconda for Python v3.7, even for the tests that use Python v3.8, because
at the time of writing there is no direct support for Python v3.8 on AppVeyor. As you can see,
the .appveyor file is quite similar to the .travis.yml file for this setup, except that we need to
manually write out this job matrix.

Once we push this new .appveyor.yml file to GitHub, the various jobs start running and the
“Current build” page changes to an overview of the different jobs:

Soon all of the individual jobs finish successfully and we can inspect their individual logs by clicking
on them. For example, the final part of the Python v3.8 / numpy v1.18.1 looks like
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As you can see, the tests pass and we are indeed using Python v3.8.

AppVeyor by default will only email you upon a change in the status, so there is no need to configure
that directly. Like Travis CI, AppVeyor will run for any change to any branch and for any opened
or updated pull request.

6.4 GitHub Actions, the new kid on the block

GitHub itself has recently unveiled a continuous-integration service called GitHub Actions. In
many ways GitHub Actions gives similar functionality to Travis CI and AppVeyor, but it has
(at least) two main advantages: (1) you can perform a variety of different tasks by defining multiple
“workflows” in their own .yml files, rather than having to configure the entire integration process
in one .yml file, and (2) you can easily use tasks, or “actions”, written by others to perform steps in
your own workflow and you can write and share your own. The first advantage means that you can
do things like run the integration tests upon each push or pull request, create binary distributions for
your code, automatically respond to Issues and Pull requests, automatically publish your package
to a package distribution, publish your documentation (e.g., if you host it yourself), by defining
multiple different workflows. The second advantage means that you can significantly simplify the
way you write your own workflows by making use of actions that perform atomic operations. These
atomic actions are things like checking out the source repository, installing python, installing Mini-
conda and setting up a conda environment, but also things like installing LaTeX, spinning up an
SSH agent for authentication, uploading files to AWS S3 buckets, etc. This way of using and sharing
code is truly following the GitHub spirit.

GitHub Actions are, obviously, seamlessly integrated with GitHub. Similar to Travis CI and
AppVeyor above, they are defined using .yml configuration file, but now you can have multiple
ones. These files live in the .github/workflows/ directory of your repository. Adding one of
these files to your repository will automatically set up GitHub Actions to run for your repository,
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so there is nothing to do beyond writing the file. You may have noticed that your package’s GitHub
page has an “Actions” tab and if you navigate there, you see a page that looks like

You could get started building your continuous-integration workflow there, but we will simply add
a .yml file ourselves to the .github/workflows/ directory to do this instead.

To define GitHub Actions workflows, it’s easiest to use the online GitHub editor to add a new file
or edit an existing file. This is because GitHub will automatically allow you to check the syntax of
the file before committing it, by clicking on “preview”, which is handy to not get too many failed
builds due to syntax errors (I have found this to happen often with workflow configuration files
written in a separate editor and pushed to the repository like other files). Therefore, navigate to the
package’s GitHub repository and click on “create a new file” just above the directory listing. We’ll
add a file .github/workflows/test_package.yml. To run the same integration tests that we
ran on Travis CI and AppVeyor, we can use the following file

name: Test exampy

on: [push]

jobs:
build:

runs-on: ubuntu-latest
strategy:

matrix:
python-version: [3.7, 3.8]
numpy-version: [1.16,1.17,1.18]
exclude:
- python-version: 3.8
numpy-version: 1.16

- python-version: 3.8
numpy-version: 1.17

steps:
- uses: actions/checkout@v2

(continues on next page)
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- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v1
with:

python-version: ${{ matrix.python-version }}
- name: Install dependencies

run: |
python -m pip install --upgrade pip
pip install numpy==${{ matrix.numpy-version }}

- name: Install package
run: |

pip install -e .
- name: Test with pytest

run: |
pip install pytest
pip install pytest-cov
pip install scipy
pytest -v tests/ --cov=exampy/

The steps in this workflow are as follows:

• name: sets the name for the workflow

• on: tells GitHub Actions when to run this workflow, with on: [push] meaning that it
should run this for every push to the repository. Typically, you’ll want to also run your tests
upon each Pull Request, which can be achieved with on: [push,pull_request]. You can
use very complex conditions of when to run your workflows.

• jobs: sets up the various jobs in this workflow. Every job runs in parallel, so you will
typically just have a single one, build: here.

• In the job, the runs_on: section defines the operating system, which can be versions of
Ubuntu, Windows, or Mac OS X.

• The strategy: section allows you to define a build matrix, similar to how this is done for
Travis CI and AppVeyor. Here, I create a matrix for two minor Python versions and three
minor numpy versions to (partially) follow NEP 29, but according to NEP 29, Python 3.8
only requires numpy v1.18 support, so I exclude the numpy versions 1.16 and 1.17 in the
exclude: section. Note that there is an include: section as well, but unlike on Travis CI
where this would add a new build to the matrix, for GitHub Actions, this can only modify
a job defined in the matrix. That’s why I have to exclude the builds I don’t want rather than
including the one I do want (Python 3.8 and numpy 1.18).

• steps: then lists the various steps that need to be run to perform the workflow and this is
where you can use pre-defined actions as part of your workflow. For many workflows, the
first step will be to clone the repository, which is done in the uses: actions/checkout@v2
step. This is a step that is defined by an action implemented by GitHub itself and the entire
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step thus simply consists of you telling the workflow to use this pre-defined action.

• Similarly, the next step uses a pre-defined action to set up a specific Python version. As you
can see, we can give steps a name:. We also need to provide the action with the Python
version that we want to set up and this is done in the with: section, which lists parameters
for the action. In this case, we set this to the Python version corresponding to the current
build in the matrix, using the ${{ matrix.python-version }} syntax.

• Next, I install the desired numpy version. Rather than using a pre-defined action, this step
simply runs a set of shell commands in the run: section. A single command could directly
follow run:, but multiple commands as in the example here need to use run: | and then list
the commands on the next lines. We again access a variable defined in the matrix to install
the correct numpy version.

• The following two steps are similar, we install the package, and then run the tests. Note
that we could have split the tests into two, with one step for installing the test dependencies
and one to run the actual tests (similar to what we did for Travis CI and AppVeyor); with
GitHub Actions, you can define as many steps as you want!

When you commit this file to your repository and navigate to the “Actions” tab again, you see a
page that looks like

which shows all of the workflows that are running or have been run for your repository, currently
only a single one, but eventually this would contain the entire history of runs. The workflow is
labeled by its commit message. Clicking on that, we get an overview page for all of the builds in
the current workflow, where as expected four builds are running for different versions of Python
and numpy:
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Clicking on an individual build, you get to a log of what happens in each of the steps, which once
the build ends for one of these looks like

By clicking on the little arrows, you can get the detailed log for each step.

Going further and running the integration tests on all three major operating systems (OS) is very
easy with GitHub Actions. To do this, we simply change the beginning of the test_package.
yml file to

name: Test exampy

on: [push]

jobs:
build:

runs-on: ${{ matrix.os }}
strategy:

matrix:
os: [ubuntu-latest, windows-latest, macos-latest]
python-version: [3.7, 3.8]

(continues on next page)
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numpy-version: [1.16,1.17,1.18]
exclude:

- os: ubuntu-latest
python-version: 3.8
numpy-version: 1.16

- os: ubuntu-latest
python-version: 3.8
numpy-version: 1.17

- os: windows-latest
python-version: 3.8
numpy-version: 1.16

- os: windows-latest
python-version: 3.8
numpy-version: 1.17

- os: macos-latest
python-version: 3.8
numpy-version: 1.16

- os: macos-latest
python-version: 3.8
numpy-version: 1.17

steps:

where everything following steps: stays the same. As you can see, all we have changed is
runs-on: to choose the OS defined by the matrx, ${{ matrix.os }}, and we have added a
row os: [ubuntu-latest, windows-latest, macos-latest] to the matrix: section. To
exclude the unnecessary components of the matrix, we have to (tediously) exclude every single OS,
because one cannot use lists in exclusions. Once you push this change, the workflow that runs looks
like

If you want to use Miniconda instead to manage Python and other dependencies, you can use an
action that accomplishes this, e.g., conda-incubator/setup-miniconda, which you can use as a step
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as, for example,

- uses: conda-incubator/setup-miniconda@v2
with:

activate-environment: test-environment
environment-file: environment.yml
python-version: ${{ matrix.python-version }}

which sets up a conda environment named test-environment that is defined in the
environment.yml file (this is a standard conda file). If you want to conda install a version
specified in the matrix, e.g., numpy in the example that we have been using, you need to do this as
conda install numpy==${{ matrix.numpy-version}} as part of a later step’s run:.

This is only a very small part of what GitHub Actions can do for you, so check out the documen-
tation to learn more.

6.5 Analyzing test coverage online using Codecov

We are now able to run our build-and-test integration on various continuous-integrations services
and as part of the logs of these runs we can see the test coverage of our test suite. That’s already very
useful, but it’s easier to analyze your test coverage results if they are displayed in a nicer format, such
as the HTML format that coverage.py can create. To make this easy, there are various free online
services that will ingest your test coverage results every time you run the test suite using continuous
integration and display it as a convenient online website. Moreover, these services are also able
to combine test coverage results from different, independent jobs that make up your build-and-test
integrations. This is useful if you break up a single test suite into multiple parallel jobs; without
the ability to combine the test coverage results from the parallel jobs, it would be very difficult to
know your test suite’s actual coverage.

While the most popular online test-coverage tool still appears to remain Coveralls, I find the al-
ternative Codecov service far superior, in everything from getting the simplest setup to work, to
making more advanced features like combining test-coverage results from different jobs or differ-
ent languages work, and it has a much more useful and pleasant interface than Coveralls. I will
therefore focus on Codecov here.

Codecov is yet another service that is seamlessly integrated with GitHub. To get started, navi-
gate to https://codecov.io/ and sign up using your GitHub account. When you login, navigate to
“Repositories”, click on “Add new repository”, and find the GitHub repository that you want to
add (here exampy again). Then all you have left to do is to invoke the “bash Codecov uploader”
in your .travis.yml’s after_success: section (I assume here that you want to upload reports
from Travis CI, but the procedure for AppVeyor or GitHub Actions would be similar) as

after_success:
- bash <(curl -s https://codecov.io/bash)
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Once you push this update to GitHub, your tests will once again run on Travis CI, and now at the
end of a successful integration run, you reports will be uploaded to your Codecov page for your
repository. The final part of the Travis CI log for a job looks like (you might have to expand this,
by clicking on the arrow in front of bash <(curl -s https://codecov.io/bash)):

and if we navigate to the repository’s Codecov page, we now see an overview of the test coverage
of all recent commits (just the one so far); for the exampy repository, this is https://codecov.io/gh/
jobovy/exampy:
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Clicking on the latest commit brings us to a page that shows the difference in test coverage with
respect to the commit’s parent (typically the previous pushed commit for the branch you are on),
which is empty at first because there is nothing to compare against. Clicking on “Files” instead,
you get an overview of the test coverage of all of the files in your repository, shown as a directory
tree or as a simple list of files:

This lists the total number of lines, the total number of covered lines, or partially-covered lines (we
don’t typically use this), and lines that are not covered. For directories (e.g., the package directory
shown above), you see a total for all of the files in that directory (so for the package directory you
see the total for all files in the package; note that there appears to be an issue that still exists despite
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being closed on GitHub where Codecov does not include the top-level __init__.py file, leading
to a one line discrepancy to our results before (page 87)).

If we navigate to a particular file, e.g., exampy/_math.py, we get a page that starts as

which shows the source code, with lines that are covered labeled in green and lines that are not
covered indicated in red (lines that are not code lines like docstrings and comments or that are
excluded by the exclude_lines = option in the .coveragerc are not labeled at all). These
pages make it easy to spot which parts of your source code are not covered by the tests.

Note that the way we have added the Codecov bash uploader to the .travis.yml file, the reports
for each run are uploaded and combined (go to the “Builds” section and you see the various Travis
CI jobs that got uploaded). Because these all repeat the same tests, this uploads the same report
multiple times (seven times in the exampy case here, leading to the number seven in front of the
lines in the above image, indicating that the line was executed seven times). Typically, you will want
to only upload reports from a single, unique run of your test suite. If you’ve split it into multiple
pieces, you want to upload reports for all of those, and they will be automatically combined, but
if you run the test suite multiple times for different setups (e.g., different Python versions as in
the example here), you want to only upload reports for one. To do this, you can put a conditional
statement in front of the upload command, for example

after_success:
- if [[ $TRAVIS_PYTHON_VERSION == 3.8 ]] && [[ $NUMPY_VERSION == 1.18.1␣

→˓]]; then bash <(curl -s https://codecov.io/bash); fi

which only uploads the reports for Python v3.8 / numpy v1.18.1 (you may want to define these as the
environment variables PYTHON_COVREPORTS_VERSION and NUMPY_COVREPORTS_VERSION, such
that they are easy to adjust when you update the versions that you run your tests for (you may use this
condition multiple times). Pushing this update to the .travis.yml file to GitHub, the integration
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suite runs again, and now only the test-coverage results from the first job (with Python v3.8 / numpy
v1.18.1) get uploaded to Codecov, which you can check by going to the “Builds” section for this
commit’s Codecov page. If we go to the Codecov page for exampy/_math.py now, we see a page
that starts with

where we now see that the lines are preceded by a “1”, indicating that they were executed once.
In general, these numbers tell you how often a line was executed during the test suite, and this is
why you want to only upload the reports from a unique run of your test suite, such that the numbers
given are the actual number of times the lines are executed without being multiplied by the number
of times the test suite was run. The more often a line is executed, the more robust it probably is.

As I discussed in the section on test coverage (page 87), you can also generate test-coverage reports
for parts of your code written in C (or in any other language). To upload these to Codecov in
addition to the Python test-coverage results, simply run the uploader as

bash <(curl -s https://codecov.io/bash) -X gcov

and Codecov will automatically combine the Python and C reports into a single online report.

6.6 Status badges for your package

I have discussed how to run continuous-integration builds for your package with various different
services and how to collect and display the test-coverage statistics from these builds. When you
have different CI services running for your code, it can be easy to lose track of the status of each
one. To help with keeping track, it’s useful to add status badges for all of the services that you are
using to your package’s GitHub page to get a quick overview.

In addition to showing the status of your CI runs and other services that you use, clicking them
typically also directly leads to your project’s page on the service in question, making them also an
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easy way to navigate to your package’s page for various services.

To get a status badge for your Travis CI runs, head to your package’s Travis CI page (you
need to be logged in) and click on the displayed badge next to your package’s name. This brings
up a dialog box that allows you to specify the branch for which you want to display the status
(typically main) and the format of the file that you will paste the badge code into (“Markdown” if
your README is in Markdown format, “RST” if it is in reStructuredText format, etc.); this dialog
box looks like

Then add the resulting code snippet to your README, e.g.. for exampy in Markdown format, the
snippet is

[![Build Status](https://travis-ci.com/jobovy/exampy.svg?
→˓branch=main)](https://travis-ci.com/jobovy/exampy)

For AppVeyor, the process is similar: go to your package’s AppVeyor page, click on “Settings”,
and then “Badges”, which gives you URLs for various badge images and a sample Markdown code
snippet:

For exampy, the snippet in Markdown is
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[![Build status](https://ci.appveyor.com/api/projects/status/
→˓7hybo3b6t0rrxnio?svg=true)](https://ci.appveyor.com/project/jobovy/
→˓exampy)

For GitHub Actions, navigate to the “Actions” tab on your package’s GitHub page and click on
the left on the workflow for which you want to get the badge (you can get badges for all different
workflows). Then on the right you will see a “Create status badge” button that when you click it
brings up a similar dialog as on Travis CI:

Now the Markdown snippet is

![Test exampy](https://github.com/jobovy/exampy/workflows/Test%20exampy/
→˓badge.svg)

which creates a badge that has the workflow name in it.

You can also create a badge for your code’s test-coverage statistics from Codecov. To get the
badge, go to your package’s Codecov page (you need to be logged in), navigate to “Settings” and
then “Badge”, which brings up a page with the code snippet for embedding the badge in a variety
of file formats
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For Markdown, the snippet now is

[![codecov](https://codecov.io/gh/jobovy/exampy/branch/main/graph/badge.
→˓svg)](https://codecov.io/gh/jobovy/exampy)

which brings up a badge that includes the fraction of your package’s statements that are covered by
the test suite, colored according to how high it is (try to get it green!).

You can also get a badge that shows the status of your documentation’s build on readthedocs.io,
which we discussed in Chapter 4 (page 66). Again, navigate to the admin page for your package’s
readthedocs.io setup where you will see a badge on the right-hand side; clicking on the “i”
symbol next to it brings up a dialog box with various badge options:
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For example, the Markdown format is

[![Documentation Status](https://readthedocs.org/projects/exampy/badge/?
→˓version=latest)](https://exampy.readthedocs.io/en/latest/?badge=latest)

You can create more badges to show off other aspects of your package. You can create badges by
hand using the shields.io service, which has a URL-based interface to request badges with different
text, color, shape, etc. For example, you could show off your package’s license by linking it through
a badge with

[![image](http://img.shields.io/badge/license-MIT-brightgreen.svg)](https:
→˓//github.com/jobovy/exampy/blob/main/LICENSE)

Any text needs to be encoded as a URL (search for “encode URL” to get a working online service
to do this for you). Note that shields.io can also create badges for certain services that are
automatically created rather than hand-crafted. For example, we will use this to create a badge for
the PyPI release of our package in the next chapter.

Adding all of these badges to the README, for exampy like
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we get something that looks like:

(note that this is a static image, while the embedded badges above are “live”, so if exampy has
changed since writing this, they make give different statuses).
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CHAPTER

SEVEN

RELEASING YOUR PACKAGE

Once you have implemented a bunch of functions, classes, and methods (page 8) in your package and
made sure your package can be installed in the standard way (page 14), once you have set up version
control with git (page 17) and you are using GitHub to develop your code online (page 25), once
you have written documentation (page 31) explaining how to install and use your code (page 44),
you have created an API for all of the functionality in your package (page 58) and you are hosting
your package’s documentation online (page 66), once you have written a comprehensive test suite
(page 71) that checks that your code works as you expect (page 75), this test suite covers a large
fraction of your package (page 87) and you are using continuous integration to run your test suite
(page 95) automatically upon every change that you make to your code, you are ready to release a
first version of your package to the world!

Many scientists still release their code by creating a source distribution (a “tarball”) and linking
to it on their website, but this fails to take advantage of the large amount of support in the Python
community (and beyond) to make releasing different versions of your code easy and allowing your
code to be installed in standard ways on different platforms with minimal headaches for the users
of your package. The primary venue for releasing Python packages is the Python Package Index
(PyPI) and it is releasing your package on PyPI that I focus on in this chapter. An additional popular
method for releasing your code, especially if it contains compiled code and/or dependencies that are
difficult to install, is to make your package installable by Anaconda’s conda install command.
The most common way to do this for scientific packages is to use conda-forge, but describing how
to get your package onto conda-forge is beyond the scope of these notes.

7.1 Versioning your code

Before you release a first version of your code, you should decide on how you want to label different
versions of your code, because once you release the first version, you’ll want to start work on the
next version! When we first created the setup.py file (page 11), we included a version string, but I
will now discuss versioning in a little more detail.

Your code’s version could be any unique string that states the version (e.g., “v1”), but to make
your code’s version easy to interpret for a wide variety of users and compatible with standard
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Python functions to process version numbers, your code should follow the standard Python ver-
sioning scheme. Python version strings should follow the format

[N!]N(.N)*[{a|b|rc}N][.postN][.devN]

which I will briefly unpack here. We’ll ignore the [N!] part, the version epoch, which is only used
when packages change the way they version and which the author of these notes has never seen in
practice.

For released versions, you only have to pay attention to the

N(.N)*

part of the version string. This states that any released version string can be any string of integers
separated by periods (e.g., “0.1.0”). While arbitrary lengths are in principle allowed, most packages
use either two integers separated by a period (e.g., “1.0”) or three integers, (e.g., “2.1.3”). Upon
a release, either the last integer is increased by 1 or one of the earlier integers in the sequence is
increased and all following integers are set to 0. So, for example,

• version “0.1” could be increased to either “0.2” or to “1.0” in the next release,

• version “1.3.2” could be increased to either of “2.0.0”, “1.4.0”, or “1.3.3”.

Note that the version string does not contain “v”, that is, the version is “1.0.0”, not “v1.0.0” (that
can be easy to forget!).

Standard Python usage of version numbers is not to use semantic versioning as advocated by semver,
but to use a more loosely defined structure of “major.minor” or “major.minor.patch” where the
“major” version is increased only when a package’s structure changes dramatically (causing much
backwards incompatibility, e.g., Python 2 to Python 3) or when the package matures significantly
to deserve a “1.x.x” version (having had “0.x.x” until then; e.g., scipy’s relatively recent version
“1.0.0”, 16 years after the first release). Therefore, for most Python packages, major version changes
are rare (but some packages update the major version more often, e.g., astropy). Typical releases
will therefore increase the minor version number, e.g., going from version “1.1” to “1.2”. The
third integer, called “patch” above, indicates small changes such as bug fixes or updates because of
dependency changes. Such patch releases would typically be made from a branch of the code created
at the latest minor version release to track bug fixes and other small changes, while development of
the next minor version continues in the main development branch.

The remainder of the possible version string

[{a|b|rc}N][.postN][.devN]

deals with pre- and post-release updates to a package. The [{a|b|rc}N] part indicates pre-release
versions, with a indicating an alpha release, b a beta release, and rc a “release candidate”. The N
that can optionally follow each of these indicates the N-th version (e.g., “a2” would be the second
alpha release). Unless you are developing a package with many users and/or that provides essential
infrastructure where each release needs to be thoroughly tested, you will typically not make use of
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these versions (but you could if you want). The [.postN] is reserved for changes to your code that
happen “post release”. These are changes, not to the source of your code itself, but to the distribution
of your code. You can for example create a .post1 release if you forgot to include the License file
in your release; if you simply want to add the file, you should create a new release (because a
release, once made, is final), but you are not changing any of the code. Finally, the [.devN] is used
to indicate development versions of your code. For example, “1.1.dev” is the development version
that will lead to release “1.1” eventually. Note that there are a bunch of alternative syntaxes allowed
by the standard (for example, you can use “alpha” instead of “a”), but for new versions it’s best to
follow the actual standard discussed here.

One of the advantages of all packages using this standard versioning scheme is that this can be
easily parsed by automated parsers, to check, for example, which version of a dependency users
have installed on their systems. One way to do this is to use setuptools’ pkg_resources, which
has a function parse_version (documented here), that returns an object that represents the version
and that can be compared to other such objects. For example, we can check that the installed version
of scipy is at least later than version “0.19” by doing

from pkg_resources import parse_version
import scipy
print(parse_version(scipy.__version__) >= parse_version('0.19'))

parse_version correctly deals with development, pre-release, and post-release versions.

You should include your package’s version in the setup.py file and define the __version__ at-
tribute in your package’s top-level __init__.py file (exampy/__init__.py in the example pack-
age); you will likely also want to define it in the documentation’s source/conf.py. Because your
package’s version then appears in multiple places in your code, you need to remember to update it
everywhere when you increment the version number. One way to do this is to make it a part of your
release checklist (discussed below), you can also make use of automated tools like bumpversion,
which can be configured to automatically update the version string in multiple files whenever you
invoke bumpversion.

7.2 Preparing for your package’s release

In preparation for your package’s initial and each subsequent release, you’ll want to add or update
some files in your repository. It’s useful to list files that need to be updated every release as part
of a release checklist (which you can add as a RELEASE_CHECKLIST.md file in your repository as
well) that explicitly lists all of the steps involved in releasing each version of your package, from
preparing the release, over uploading your package to PyPI, to setting up the next development
version.

Some of the files that you will want to add or update for every release are:

• A HISTORY.txt or HISTORY.md (for formatted GitHub content) file that lists major changes
and additions to your package since the previous release. For the first release, this file can
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simply state that this is the first release, but at each subsequent release you should update
this file with all of the major changes since the previous release. It’s easiest to keep this file
up to date by adding to it as you develop each version, rather than writing it at the end. If
you find yourself having to write it at the end, go through all Issues and Pull Requests to find
major changes, or look through the git log up to the last release (although if you are making
the recommended frequent commits, this will be a long and detailed log). One way to help
yourself keep track of major changes is to submit Pull Requests for all of these even if you
are making the changes yourself and you could just merge them directly.

If your documentation includes a page summarizing major changes, you’ll want to update
that one as well.

• Update the version number to that of the release you are going to make, typically at least in
the setup.py file and the top level __init__.py file. You should have been using a version
“x.y.z.dev” while developing version “x.y.z” and in that case this is as simple as removing
the “.dev” part of the version string.

• To obtain fine-grained control over which files are included in the source distribution, you
need to use a MANIFEST.in file. Many files are included by default, most importantly: all
Python files included in your package (through the packages keyword of the setuptools.
setup command in your setup.py file), the setup.py file itself, any files specified in
setuptools.setup’s package_data keyword, scripts included in the setup, C source files
for any C extensions specified in setuptools.setup, various README formats (without ex-
tension, or with .txt, .rst, or .md extension), and the MANIFEST.in file itself. Test files
following test/test*.py are also included (not tests/test*.py). The MANIFEST.in
file then gives you the option to include extra files or to exclude files from the standard list.
To include a file, add a line include FILE in MANIFEST.in where FILE is the path to the
file, which can include standard wildcards. To exclude a file, add a line exclude FILE (e.g.,
to exclude the tests, add exclude test/test*.py). One file you’ll want to include is the
LICENSE file. If you have other useful files in your repository, e.g., INSTALL.mdwith instal-
lation instructions (typically given in the README file) or AUTHORS.md with contributors
to your code, you can also include them in the MANIFEST.in file. If your package includes a
C extension, you’ll have to include the header files, because they will not by default be copied
to the source distribution.

As an example, for the exampy example package, I created the following MANIFEST.in

include LICENSE README.md
exclude tests/test*.py

to include the LICENSE file, to make sure to include the README.md file (it should be included
anyway, but it does not hurt to make sure), and to exclude the tests.

If you have added files to your package since the last release, you might have to add some
of them to MANIFEST.in to make sure that they are included in the source distribution. You
can get a list of all files added since your last release by running
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git diff --name-status PREV_RELEASE_HASH | grep ^A

where PREV_RELEASE_HASH is the git hash corresponding to the previous release.

Once you’re happy with all of the necessary additions and changes, you should make sure to have
commit all of the changes to your repository and push them to GitHub such that your automated
tests can run one last time to check that all is well.

Provided that your tests pass, you can then move on to the next step, which is tagging the next
release and creating it on GitHub. To create a tag, simply run

git tag x.y.z

where x.y.z is the version of the release. Push this to GitHub with

git push --tags

Then you can go to your package’s GitHub page and navigate to the “Releases” tab, in the row above
the directory structure of your repository:

When you have pushed the tag, you will see that GitHub has created a release, that currently just
looks like a stub:

You can create the actual release by clicking on this, clicking on “Edit tag”, and giving the release
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a title and short description (as usual, using MarkDown formatting), and hitting “Publish release”
on the page that looks like this:

Then you have created the release of your code on GitHub!

7.3 Uploading your package to the Python Package Index
(PyPI)

Next, we will release our package to the Python Package Index PyPI. To get started, navigate to
PyPI at https://pypi.org/ to register for an account; we’ll use TestPyPIat to test that our release
looks okay and works as expected, so also navigate to TestPyPI at https://test.pypi.org/ to register
for an account on TestPyPI (TestPyPI is entirely separate from PyPI, so your PyPI account is
separate from your TestPyPI account). Interacting with PyPI and TestPyPI is done, of course,
using a Python package called twine, which you can install with

pip install twine

At first, we will simply package the source of our package and upload it to PyPI as a first release.
To create a source distribution, do

python setup.py sdist

in your package’s top-level directory. To make sure you aren’t accidentally including files in your
development version that are not part of the package, it is useful to do this from a fresh clone of
your repository, checking out the tag with

git checkout x.y.z
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where x.y.z is the version of the tag that you created above. Running the python setup.py
sdist command creates a source distribution for the current released version in a dist/ directory,
with a filename of something like dist/PACKAGENAME-VERSION.tar.gz, e.g., dist/exampy-0.
1.tar.gz for the first release of the example exampy package. If this is not your first release, you’ll
want to remove old releases from the dist/ directory before continuing (but you should be working
with a fresh clone, so an empty dist/ directory).

The first thing you want to check is that the long_description that you have specified in your
setup.py’s setuptools.setup command can be correctly displayed by PyPI; to check this, run

twine check dist/*

which performs this check for all source distributions in the dist/ directory (you can also manually
specify the latest one as the filename). It’s useful to run this check before creating the final release,
so you can fix any issues before tagging the release. Add it to your release checklist for the next
release!

Next, upload the source distribution to TestPyPI. TestPyPI is a clone of PyPI and you can there-
fore check that your package release upload and the way it appears on the website look okay before
publishing the final release. Once you upload a version to PyPI you can no longer easily change it,
so for every release you should check with TestPyPI to make sure you are not making any mistakes
(e.g., formatting errors in the long_description that will form the webpage for your package on
PyPI. You can upload your source distribution by doing

twine upload --repository-url https://test.pypi.org/legacy/ dist/*

which uploads every release file in the dist/ directory; currently this is only the source distribution,
but when you build binary distributions (as I will discuss below), those would also be uploaded.
You’ll be prompted for your username and password and if all goes well you should see the following
output (for the example package’s first release)

Enter your username: USERNAME
Enter your password:
Uploading distributions to https://test.pypi.org/legacy/
Uploading exampy-0.1.tar.gz
100%|| 5.46k/5.46k [00:01<00:00, 2.85kB/s]

Then navigate to your project’s page on TestPyPI (e.g., https://test.pypi.org/project/exampy/) and
check that all looks well. You’ll want to check that (a) your long_description, which is typically
the README.md or README.rst that you have on GitHub as I discussed in Chapter 2 (page 11), is
rendered correctly as the webpage of your release, and (b) that the source distribution was properly
uploaded by checking the “Download files” tab. For the first release of the exampy package, this
test page looks like
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which immediately shows a problem with this release: I had not provided a long_description,
so there is no web page! The twine check dist/* command above would have already told us
that, but now it can no longer be ignored! To fix this, I create a new release of exampy that includes
the long_description keyword in its setup (this requires a full new release, because it changes
a file, setup.py, that is part of the source and its installation). After (a) removing the previous
release from dist/, (b) creating the new source release using python setup.py sdist, and (c)
running twine check dist/* to check that it now passes, we run the upload command again

twine upload --repository-url https://test.pypi.org/legacy/ dist/*

and now the TestPyPI page looks like

This now looks as we expect it to look, similar to the GitHub page. TestPyPI is a fully functional
Python package index, so you can install with pip from TestPyPI using, e.g.,

pip install -i https://test.pypi.org/simple/ exampy
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which is useful to check your package installs without a hitch using pip.

Once you’re happy with the way your package release looks on TestPyPI, it’s time to upload your
release to PyPI itself. This you do with

twine upload dist/*

This works the same way as uploading to TestPyPI. Once the upload is finished, you can navigate
to your package’s PyPI site, e.g., https://pypi.org/project/exampy/, which looks something like

Once your package is on PyPI, you may want to add a badge (page 122) to your package’s README
on GitHub that shows the latest PyPI release and links to it. This can be done with the snippet:

[![image](http://img.shields.io/pypi/v/exampy.svg)](https://pypi.python.
→˓org/pypi/exampy/)

7.4 Building and adding binary distributions (“wheels”) to
your PyPI release

So far I have only discussed how to release your package’s source code, which means that users
who install your package have to build the code themselves from the source. While this is relatively
straightforward for pure Python packages, if your package is large or if it contains compiled C
extensions, the build process can be complex, prone to errors, and long. For example, in Chapter
6 (page 95) we saw that having to build numpy from source as part of the Travis CI continuous-
integration procedure for the exampy example package made the run take substantially longer. To
make the installation of your code easier, you should create binary distributions called “wheels” of
your package and upload these to PyPI. When a user then asks to install your package using pip
and a wheel is available for their Python version and platform, the wheel will be installed instead
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of building the package from source. If your code contains extensions that need to be compiled
and you want to support Windows natively, creating pre-built binary releases of your package is
essential, because many Windows users will not have a compiler installed.

The type and number of binary wheels that you can create for your package depends on the code that
is included in your package. If your package is a pure Python package (that is, it does not contain
compiled extensions, just *.py files), then you can create a single wheel that can be used on any
platform (e.g., Windows, Mac OS X, or Linux). If your package contains compiled extensions, you
have to create wheels for each platform and for each minor Python version that you want to support
separately (because the Python C code is specific to each minor version); you therefore have a lot
more work then!

To build wheels, first you need to install the (wait for it) wheel package with

pip install wheel

Then you can create a binary wheel by running

python setup.py bdist_wheel

This command will automatically determine whether to build a platform-agnostic wheel if your
package is pure Python or to build a platform/Python-version specific wheel if your package con-
tains compiled code. Build wheels are added to the dist/ directory, which is the reason why the
twine upload commands above specified dist/*; this way both the source distribution and any
built wheels are uploaded simultaneously. The example exampy package is pure Python, so when
you run the command a wheel

exampy-0.2-py3-none-any.whl

is created. The name of the wheel has the format PACKAGENAME-PACKAGEVERSION-
PYTHONVERSION-PYTHONCVERSION-PLATFORM.whl. Because the package is pure Python, the
Python C version that you are using is irrelevant and is therefore set to none and the platform
is arbitrary, thus, any. Because the only major Python version that is currently supported is Python
3, you only need to build a wheel for Python 3; this can be created using any minor Python 3.x ver-
sion (note that if your package requires features only available in a later 3.x version, the wheel will
build and be installable for earlier versions, but the code will likely fail at runtime). When Python 2
was still supported (only a few months ago at the time of writing), you could also create a separate
wheel with Python 2 or, if your package directly supported both Python 2 and 3, you could build
a universal wheel with python setup.py bdist_wheel --universal, which would work for
both major Python versions and would have the name exampy-0.2-py2.py3-none-any.whl for
the example package. However, with Python 2 no longer being supported, there is no need for new
packages to create Python 2 wheels (unless they really think users who cannot upgrade want to use
it).

If your package includes compiled code, then that code will be compiled as part of the python
setup.py bdist_wheel execution and a compiled, built wheel specific to the minor Python ver-
sion that you use to run the command and the platform will be created. For example, suppose the
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exampy package contained a compiled C extension and we ran python setup.py bdist_wheel
using Python 3.7 on a Mac, we would create a wheel with the name

exampy-0.2-cp37-cp37m-macosx_10_9_x86_64.whl

where now the PYTHONVERSION in PACKAGENAME-PACKAGEVERSION-PYTHONVERSION-
PYTHONCVERSION-PLATFORM.whl is cp37, indicating “CPython 3.7”, since there are other
implementations of Python such as PyPy (not to be confused with PyPI!). The Python C API
version is also CPython 3.7, hence the second cp37, and the platform is the specific Mac version
that you ran the command on, in this case Mac OS X 10.9, 64 bit (the x86_64 part). You can create
multiple wheels for different Python versions by running python setup.py bdist_wheel
with different versions of Python (e.g., using different conda environments or different virtualenv
environments). Each of these would be added to the dist/ directory and all would be uploaded to
PyPI using twine upload dist/*.

When you create a wheel on a Linux operating system, the wheel’s platform will be something
like linux_x86_64, which does not specify the Linux distribution that you are using. For this
reason, PyPI does not accept such Linux wheels, it only accepts manylinux1 wheels built on
Linux. These are wheels that are defined in Python Enhancement Proposal 513 that are only allowed
to link to a small subset of C libraries, such that they can be easily installed on many different
Linux distributions. Unless you really care about making your code easy to install on Linux, I
would recommend not bothering creating such manylinux1wheels (Linux users are typically quite
sophisticated and should therefore be able to work with a compiler and install dependencies; the
only reason to create a binary wheel would be to speed up continuous integration run for packages
that have to install your package if building your package from source is slow).

If you need to create multiple compiled wheels for different Python versions and for both Mac OS
X and Windows platforms, you can either use a Mac or Windows computer that you have access to,
create all different wheels, and upload them all to PyPI (you can just run

twine upload dist/* --skip-existing

on multiple machines, and files will just be added), or you can use external services to build all
of the wheels for you, collect them, and upload them to PyPI. Using external services is good,
because it makes sure that the build environment is clean and it means that you don’t have to use
multiple machines. Because the most important compiled wheel to create is the Windows one, I
will describe how to use AppVeyor to do this, but you could use Travis CI to do the same for
Mac OS X wheels.

The way you can create wheels using AppVeyor is to create them at the end of your AppVeyor
integration runs (page 108) and add them as an “Artifact”, which can be downloaded from the
AppVeyor page for your run. Thus, if you haven’t already set up continuous integration using
AppVeyor, you need to do that first. There are multiple ways to create artifacts on AppVeyor, but
one flexible way is to use the command-line command Push-AppveyorArtifact. Typically, you
would only create a wheel if your integrations tests pass and to do this, you should add the following
section to your .appveyor.yml file
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after_test:
- ps: |

pip install wheel
python setup.py bdist_wheel
Get-ChildItem dist\*.whl | % { Push-AppveyorArtifact $_.FullName -

→˓FileName $_.Name }

This simply installs the wheel package, builds the wheel, and then finds the wheel in dist\ (the
Windows path!) and pushes it as an artifact. To find this artifact, navigate to your package’s
AppVeyor web page, go to the build and the job that creates the artifact (each job will by default
create an artifact), and click on the “Artifacts” tab. For the example package, the page that you get
to looks like

You see that the wheel is available as an artifact and you can download it there. Because exampy
is pure Python, this is the simple pure-Python wheel that we discussed above, but if the package
contains compiled code, the wheel would be specific to the Python version that it was built with
and to the Windows operating system.

To create Windows wheels for different Python minor versions, you can use a matrix AppVeyor
build with multiple Python versions as discussed in Chapter 6 (page 108). If you run multiple jobs
for the same Python version (e.g., like in the example in Chapter 6, where I run jobs with three
different numpy versions for each Python version), you may only want to create artifacts for one
of the jobs for each Python version (not that you couldn’t create them for each job, since they are
specific to a job, but it would be somewhat wasteful). To do this, you could add an environment
variable BUILD_ARTIFACT that is either "true" or "false", depending on whether you want the
job to create the artifact, and then use

after_test:
- ps: |

if ($env:BUILD_ARTIFACT -eq "true") {
pip install wheel

(continues on next page)
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(continued from previous page)

python setup.py bdist_wheel
Get-ChildItem dist\*.whl | % { Push-AppveyorArtifact $_.FullName -

→˓FileName $_.Name }
}

To add these AppVeyor built artifacts to your release, you can just download the one(s) created for
the AppVeyor run corresponding to the git tag of your release into your local dist/ folder and
then upload them from your machine using twine uploadwhen you upload the source distribution
as well. You can set things up such that wheels are automatically uploaded to PyPI from AppVeyor
itself, but you probably want to finely control exactly what gets uploaded to your official release on
PyPI, which is difficult when the upload happens automatically. Unless you release so often that
you need the automation, it’s easiest to just download the wheels and upload them to PyPI yourself.

7.5 Starting the development of your next version

Once you have created your release and uploaded all files to PyPI, you will want to set up your
package for the development of your next version. The following is a list of some thing you may
want to do now to make this easier:

• Update the version number everywhere in your package to the next version (including the
.dev end to indicate that this version is currently in development). Remember, the version
string likely appears at least in your setup.py file, the top-level __init__.py, and your
documentations source/conf.py file.

• If you want to keep open the possibility to patch small bugs in the currently-released version,
while developing larger changes in the main development branch of your repository (typically
main), you should create a maintenance branch, called something like maintenance/a.b.
x, where a.b is the minor version you just released; typically, you’ll only want to do this for
every increase in b in this version, so then you create a maintenance branch maintenance/
a.b.x (e.g., maintenance/1.3.x) to be able to fix bugs in that branch and use it to make
patch releases in the a.b.x series (e.g., 1.3.1 would fix minor bugs in 1.3.0).

• Add a new section at the top of your history file (e.g., HISTORY.md) for the next version where
you can start recording major updates to the code for the next release.

And now you are ready to keep developing your package for many happy releases to come!
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